Erb Tobias J
Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043 Marburg, Germany.
LOEWE Center for Synthetic Microbiology (Synmikro), Marburg, Germany.
Emerg Top Life Sci. 2019 Nov 11;3(5):579-586. doi: 10.1042/ETLS20190015.
In natural metabolic networks, more than 2000 different biochemical reactions are operated and spatially and temporally co-ordinated in a reaction volume of <1 µm3. A similar level of control and precision has not been achieved in chemical synthesis, so far. Recently, synthetic biology succeeded in reconstructing complex synthetic in vitro metabolic networks (SIVMNs) from individual proteins in a defined fashion bottom-up. In this review, we will highlight some examples of SIVMNs and discuss how the further advancement of SIVMNs will require the structural organization of these networks and their reactions to (i) minimize deleterious side reactions, (ii) efficiently energize these networks from renewable energies, and (iii) achieve high productivity. The structural organization of synthetic metabolic networks will be a key step to create novel catalytic systems of the future and advance ongoing efforts of creating cell-like systems and artificial cells.
在天然代谢网络中,2000多种不同的生化反应在体积小于1立方微米的反应空间内运行,并在时空上进行协调。到目前为止,化学合成尚未达到类似的控制水平和精度。最近,合成生物学成功地以自下而上的方式从单个蛋白质中重建了复杂的体外合成代谢网络(SIVMNs)。在这篇综述中,我们将重点介绍一些SIVMNs的例子,并讨论SIVMNs的进一步发展将如何需要这些网络及其反应的结构组织,以(i)尽量减少有害的副反应,(ii)从可再生能源有效地为这些网络提供能量,以及(iii)实现高生产率。合成代谢网络的结构组织将是创建未来新型催化系统以及推进当前创建类细胞系统和人工细胞努力的关键一步。