Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Centre of Biological Engineering, University of Minho, Campus of Gualtar, Braga, Portugal.
Curr Opin Chem Biol. 2023 Aug;75:102324. doi: 10.1016/j.cbpa.2023.102324. Epub 2023 May 17.
With the rapid progress in metabolomics and sequencing technologies, more data on the metabolome of single microbes and their communities become available, revealing the potential of microorganisms to metabolize a broad range of chemical compounds. The analysis of microbial metabolomics datasets remains challenging since it inherits the technical challenges of metabolomics analysis, such as compound identification and annotation, while harboring challenges in data interpretation, such as distinguishing metabolite sources in mixed samples. This review outlines the recent advances in computational methods to analyze primary microbial metabolism: knowledge-based approaches that take advantage of metabolic and molecular networks and data-driven approaches that employ machine/deep learning algorithms in combination with large-scale datasets. These methods aim at improving metabolite identification and disentangling reciprocal interactions between microbes and metabolites. We also discuss the perspective of combining these approaches and further developments required to advance the investigation of primary metabolism in mixed microbial samples.
随着代谢组学和测序技术的快速发展,越来越多关于单个微生物及其群落代谢组的数据变得可用,这揭示了微生物代谢广泛的化学化合物的潜力。微生物代谢组学数据集的分析仍然具有挑战性,因为它继承了代谢组学分析的技术挑战,例如化合物的鉴定和注释,同时在数据解释方面也存在挑战,例如区分混合样本中的代谢物来源。这篇综述概述了分析初级微生物代谢的计算方法的最新进展:利用代谢和分子网络的基于知识的方法和结合使用机器学习/深度学习算法和大规模数据集的数据驱动方法。这些方法旨在提高代谢物的鉴定,并理清微生物和代谢物之间的相互作用。我们还讨论了结合这些方法的观点以及进一步发展的必要性,以推进混合微生物样本中初级代谢的研究。