PES College of Pharmacy, Bengaluru, Karnatka, India.
Department of Pharmaceutical Sciences, KLE College of Pharmacy, 2nd block, Rajajinagar, Bengaluru, Karnatka, India.
Comput Methods Programs Biomed. 2020 Mar;185:105169. doi: 10.1016/j.cmpb.2019.105169. Epub 2019 Oct 31.
Thermal conductivity of Deoxyribonucleic acid molecules is important for nanotechnology applications. Theoretical simulations based on simple models predict thermal conductivity for these molecular structures.
In this work, we calculate the thermal properties of Deoxyribonucleic acid with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. In these methods, each Deoxyribonucleic acid molecule is represented by C, N, O, and P atoms and implemented dreidng potential to describe their atomic interactions.
Our calculated rate for thermal conductivity via equilibrium and non-equilibrium molecular dynamics methods is 0.381 W/m K and 0.373 W/m K, respectively. By comparing results from these two methods, it was found that the results from equilibrium and non-equilibrium molecular dynamics methods are identical, approximately. On the other hand, the number of DNA molecules and the equilibrium temperature of the simulated structures were important factors in their thermal conductivity rates, and their thermal conductivity was calculated at 0.323 W/m K-0.381 W/m K intervals for equilibrium and 0.303 W/m K-0.373 W/m K interval for non-equilibrium calculations.
These results are in good agreement with thermal conductivity calculation with other research groups.
脱氧核糖核酸分子的导热系数对于纳米技术应用很重要。基于简单模型的理论模拟可以预测这些分子结构的导热系数。
在这项工作中,我们通过平衡和非平衡分子动力学方法计算了具有精确原子排列的脱氧核糖核酸的热性质。在这些方法中,每个脱氧核糖核酸分子由 C、N、O 和 P 原子表示,并采用 Dreiding 势能来描述它们的原子相互作用。
我们通过平衡和非平衡分子动力学方法计算的导热率分别为 0.381 W/m·K 和 0.373 W/m·K。通过比较这两种方法的结果,发现平衡和非平衡分子动力学方法的结果大致相同。另一方面,DNA 分子的数量和模拟结构的平衡温度是影响其导热率的重要因素,它们的导热率在平衡条件下的计算范围为 0.323 W/m·K-0.381 W/m·K,在非平衡条件下的计算范围为 0.303 W/m·K-0.373 W/m·K。
这些结果与其他研究小组的导热系数计算结果吻合良好。