Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany.
Sci Adv. 2021 Jan 1;7(1). doi: 10.1126/sciadv.abd3803. Print 2021 Jan.
Here, we report the topology-matched design of heteromultivalent nanostructures as potent and broad-spectrum virus entry inhibitors based on the host cell membrane. Initially, we investigate the virus binding dynamics to validate the better binding performance of the heteromultivalent moieties as compared to homomultivalent ones. The heteromultivalent binding moieties are transferred to nanostructures with a bowl-like shape matching the viral spherical surface. Unlike the conventional homomultivalent inhibitors, the heteromultivalent ones exhibit a half maximal inhibitory concentration of 32.4 ± 13.7 μg/ml due to the synergistic multivalent effects and the topology-matched shape. At a dose without causing cellular toxicity, >99.99% reduction of virus propagation has been achieved. Since multiple binding sites have also been identified on the S protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), we envision that the use of heteromultivalent nanostructures may also be applied to develop a potent inhibitor to prevent coronavirus infection.
在这里,我们报告了基于宿主细胞膜的异价纳米结构作为有效和广谱病毒进入抑制剂的拓扑匹配设计。最初,我们研究了病毒的结合动力学,以验证异价部分比同价部分具有更好的结合性能。将异价结合部分转移到具有与病毒球形表面匹配的碗状形状的纳米结构上。与传统的同价抑制剂不同,由于协同的多价效应和拓扑匹配的形状,异价抑制剂的半最大抑制浓度为 32.4 ± 13.7 μg/ml。在不引起细胞毒性的剂量下,病毒的繁殖减少了>99.99%。由于还在 SARS-CoV-2(严重急性呼吸系统综合征冠状病毒 2)的 S 蛋白上鉴定出多个结合位点,我们设想使用异价纳米结构也可用于开发有效的抑制剂来预防冠状病毒感染。