Liu Haijun, Zhang Mengru M, Weisz Daniel A, Cheng Ming, Pakrasi Himadri B, Blankenship Robert E
Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
Sci Adv. 2021 Jan 6;7(2). doi: 10.1126/sciadv.aba5743. Print 2021 Jan.
In cyanobacteria and red algae, the structural basis dictating efficient excitation energy transfer from the phycobilisome (PBS) antenna complex to the reaction centers remains unclear. The PBS has several peripheral rods and a central core that binds to the thylakoid membrane, allowing energy coupling with photosystem II (PSII) and PSI. Here, we have combined chemical cross-linking mass spectrometry with homology modeling to propose a tricylindrical cyanobacterial PBS core structure. Our model reveals a side-view crossover configuration of the two basal cylinders, consolidating the essential roles of the anchoring domains composed of the ApcE PB loop and ApcD, which facilitate the energy transfer to PSII and PSI, respectively. The uneven bottom surface of the PBS core contrasts with the flat reducing side of PSII. The extra space between two basal cylinders and PSII provides increased accessibility for regulatory elements, e.g., orange carotenoid protein, which are required for modulating photochemical activity.
在蓝细菌和红藻中,决定从藻胆体(PBS)天线复合体到反应中心的高效激发能转移的结构基础仍不清楚。PBS有几个外周杆和一个与类囊体膜结合的中央核心,从而实现与光系统II(PSII)和光系统I(PSI)的能量耦合。在此,我们将化学交联质谱与同源建模相结合,提出了一种三圆柱形蓝细菌PBS核心结构。我们的模型揭示了两个基部圆柱体的侧视图交叉构型,巩固了由ApcE PB环和ApcD组成的锚定结构域的重要作用,它们分别促进向PSII和PSI的能量转移。PBS核心不平的底面与PSII平坦的还原侧形成对比。两个基部圆柱体和PSII之间的额外空间为调节光化学活性所需的调节元件(如橙色类胡萝卜素蛋白)提供了更高的可及性。