Suppr超能文献

一种适应远红光的蓝细菌单体光系统 II 核心复合物的结构揭示了叶绿素 d 和 f 的功能。

Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f.

机构信息

Department of Chemistry, Yale University, New Haven, Connecticut, USA.

Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.

出版信息

J Biol Chem. 2022 Jan;298(1):101424. doi: 10.1016/j.jbc.2021.101424. Epub 2021 Nov 19.

Abstract

Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700-800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the "red limit" for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the Chl position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth.

摘要

远红(FRL)光光驯化在蓝细菌中通过扩展光合作用有效辐射范围包括远红/近红外光(700-800nm)为一些陆地蓝细菌提供了选择性生长优势。在这个光驯化过程中,光系统 II(PSII),水:质体醌光氧化还原酶参与有氧光合作用,被修饰。由此产生的 FRL-PSII 由 FRL 特异性核心亚基组成,并结合叶绿素(Chl)d 和 Chl f 分子代替细胞在可见光下生长时发现的几个 Chl a 分子。这些新的 Chls 有效地降低了经典认为定义驱动水氧化光化学催化所需光的“红色极限”的能量。FRL-PSII 结构的变化以前是未知的,并且 Chl d 和 Chl f 分子的位置仅根据间接证据提出。在这里,我们描述了来自 Synechococcus sp. PCC 7335 细胞的单体 FRL-PSII 核心复合物的 2.25 Å 分辨率冷冻电镜结构,该细胞适应于 FRL。我们在电子传递链的 Chl 位置鉴定了一个 Chl d 分子和核心天线中的四个 Chl f 分子。我们还进行了一些观察,增强了我们对 PSII 生物发生的理解,特别是在复合物的受体侧,在没有组装因子 Psb28 的情况下,碳酸氢盐分子被谷氨酸侧链取代。总之,这些结果为驱动水氧化所需的低能量极限提供了结构基础,这是地球上大多数太阳能利用的门户。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5708/8689208/90f6ee15702a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验