Hu Xin-Yu, Jing Mao-Xiang, Yang Hua, Liu Quan-Yao, Chen Fei, Yuan Wei-Yong, Kang Le, Li Dong-Hong, Shen Xiang-Qian
Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
J Colloid Interface Sci. 2021 May 15;590:50-59. doi: 10.1016/j.jcis.2021.01.018. Epub 2021 Jan 22.
Poor room-temperature ionic conductivity and lithium dendrite formation are the main issues of solid electrolytes. In this work, rod-shaped alumina incorporation and graphite coating were simultaneously applied to poly (propylene carbonate) (PPC)-based polymer solid electrolytes (Wang et al., 2018). The obtained alumina modified solid electrolyte membrane (Al-SE) achieves a high ionic conductivity of 3.48 × 10 S/cm at room temperature with a wide electrochemical window of 4.6 V. The assembled NCM622/Al-SE/Li solid-state battery exhibits initial discharge capacities of 198.2 mAh/g and 177.5 mAh/g at the current density of 0.1 C and 0.5 C, with the remaining capacities of 165.8 mAh/g and 161.3 mAh/g after 100 cycles respectively. The rod-shaped structure of AlO provides fast transport channels for lithium ions and its Lewis acidity promotes the dissociation of lithium salts and release of free lithium ions. The lithiophilic AlO and Graphite form intimate contact with metallic Li and create fast Li conductive layers of Li-Al-O layer and LiC layer, thus facilitating the uniform deposition of Li and inhibiting Li dendrite formation during long-term cycling. This kind of composite Al-SE is expected to provide a promising alternative for practical application in solid electrolytes.
室温离子电导率低和锂枝晶形成是固体电解质的主要问题。在这项工作中,将棒状氧化铝掺入和石墨涂层同时应用于聚碳酸亚丙酯(PPC)基聚合物固体电解质(Wang等人,2018年)。所获得的氧化铝改性固体电解质膜(Al-SE)在室温下实现了3.48×10 S/cm的高离子电导率,电化学窗口宽达4.6 V。组装的NCM622/Al-SE/Li固态电池在0.1 C和0.5 C的电流密度下,初始放电容量分别为198.2 mAh/g和177.5 mAh/g,100次循环后剩余容量分别为165.8 mAh/g和161.3 mAh/g。AlO的棒状结构为锂离子提供了快速传输通道,其路易斯酸性促进了锂盐的离解和游离锂离子的释放。亲锂的AlO和石墨与金属Li形成紧密接触,形成Li-Al-O层和LiC层的快速Li导电层,从而促进Li的均匀沉积并抑制长期循环过程中锂枝晶的形成。这种复合Al-SE有望为固体电解质的实际应用提供一种有前景的替代方案。