State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China.
State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China.
Chemosphere. 2021 Jun;273:129672. doi: 10.1016/j.chemosphere.2021.129672. Epub 2021 Jan 18.
Microbial oxidation of As(III) by biofilm bioreactors followed by adsorption is a promising and environment friendly approach to remediate As(III) contaminated groundwater; however, poor activity, stability and expandability of the bioreactors hampered their industrious applications. To resolve this issue, we constructed a new biofilm bioreactor using a powerful chemoautotrophic As(III)-oxidizing bacterium Rhizobium sp. A219. This strain has strong ability to form biofilms and possesses very high As(III)-oxidizing activities in both planktonic and biofilm forms. Perlites were used as the biofilm carriers. Long-term operations suggest that the bioreactor has very high efficiency, stability and scalability under different geochemical conditions, and it is cheap and easy to construct and operate. During the operations, it is only required to supply air, nothing else. All the common contaminants in groundwater slightly affected the bioreactor As(III)-oxidizing activity. The common contaminants in groundwater can be largely removed through assimilation by the bacterial cells as nutrition. The bioreactor completely oxidize 1.0, 5.0, 10.0, 20.0 and 30.0 mg/L As(III) in 12, 18, 20, 25 and 30 min, respectively. Approximately 18, 18, 12, 12 and 21 min were needed to oxidize 1.1 mg/L As(III) at 20, 25, 30, 35 and 40 °C, respectively. The bioreactor works well under the pH values of 5-8, and the most optimal was 7.0. The data suggest that this bioreactor possesses the highest efficiency and stability, and thus has the great potential for industrial applications among all the described As(III)-oxidizing bioreactors derived from a single bacterium.
利用生物膜生物反应器将 As(III)进行微生物氧化,然后进行吸附,是一种很有前景且环保的方法,可用于修复受 As(III)污染的地下水;然而,生物反应器的活性、稳定性和可扩展性较差,阻碍了它们的工业化应用。为了解决这个问题,我们构建了一种新的生物膜生物反应器,使用了一种具有强大的化能自养型 As(III)氧化菌 Rhizobium sp. A219。该菌株具有很强的形成生物膜的能力,并且在浮游和生物膜形式下都具有非常高的 As(III)氧化活性。珍珠岩被用作生物膜载体。长期运行表明,该生物反应器在不同地球化学条件下具有很高的效率、稳定性和可扩展性,并且构建和运行成本低廉、操作简单。在运行过程中,只需要提供空气,不需要其他任何东西。地下水中的常见污染物对生物反应器的 As(III)氧化活性略有影响。这些常见的污染物可作为细菌细胞的营养物质被大量吸收去除。生物反应器可在 12、18、20、25 和 30 min 内分别将 1.0、5.0、10.0、20.0 和 30.0 mg/L 的 As(III)完全氧化,在 20、25、30、35 和 40°C 下分别需要 18、18、12、12 和 21 min 来氧化 1.1 mg/L 的 As(III)。生物反应器在 pH 值为 5-8 之间运行良好,最适 pH 值为 7.0。数据表明,该生物反应器具有最高的效率和稳定性,因此在所有描述的由单一细菌衍生的 As(III)氧化生物反应器中,具有最大的工业化应用潜力。