文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于人体活动识别的可穿戴脊柱追踪器与基于视频的姿态估计

Wearable Spine Tracker vs. Video-Based Pose Estimation for Human Activity Recognition.

作者信息

Walkling Jonas, Sander Luca, Masch Arwed, Deserno Thomas M

机构信息

Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38100 Braunschweig, Germany.

出版信息

Sensors (Basel). 2025 Jun 18;25(12):3806. doi: 10.3390/s25123806.


DOI:10.3390/s25123806
PMID:40573692
Abstract

This paper presents a comparative study for detecting the activities of daily living (ADLs) using two distinct sensor systems: the FlexTail wearable spine tracker and a camera-based pose estimation model. We developed a protocol to simultaneously record data with both systems and capture eleven activities from general movement, household, and food handling. We tested a comprehensive selection of state-of-the-art time series classification algorithms. Both systems achieved high classification performance, with average F1 scores of 0.90 for both datasets using a 1-second time window and the random dilated shapelet transform (RDST) and QUANT classifier for FlexTail and camera data, respectively. We also explored the impact of hierarchical activity grouping and found that while it improved classification performance in some cases, the benefits were not consistent across all activities. Our findings suggest that both sensor systems recognize ADLs. The FlexTail model performs better for detecting sitting and transitions, like standing up, while the camera-based model is better for activities that involve arm and hand movements.

摘要

本文展示了一项比较研究,该研究使用两种不同的传感器系统来检测日常生活活动(ADL):FlexTail可穿戴脊柱追踪器和基于摄像头的姿态估计模型。我们开发了一种协议,用于同时使用这两种系统记录数据,并捕捉一般运动、家务和食物处理方面的十一项活动。我们测试了一系列全面的最新时间序列分类算法。两个系统都取得了较高的分类性能,对于两个数据集,使用1秒时间窗口时,FlexTail数据集和摄像头数据集的平均F1分数分别为0.90,分别使用随机扩张形状let变换(RDST)和QUANT分类器。我们还探讨了分层活动分组的影响,发现虽然在某些情况下它提高了分类性能,但这些好处在所有活动中并不一致。我们的研究结果表明,这两种传感器系统都能识别日常生活活动。FlexTail模型在检测坐姿和诸如站起来等转换动作方面表现更好,而基于摄像头的模型在涉及手臂和手部动作的活动方面表现更好。

相似文献

[1]
Wearable Spine Tracker vs. Video-Based Pose Estimation for Human Activity Recognition.

Sensors (Basel). 2025-6-18

[2]
Comparing the Accuracy of Different Wearable Activity Monitors in Patients With Lung Cancer and Providing Initial Recommendations: Protocol for a Pilot Validation Study.

JMIR Res Protoc. 2025-6-19

[3]
Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review.

Int J Med Inform. 2023-5

[4]
Pharmacotherapies for sleep disturbances in dementia.

Cochrane Database Syst Rev. 2016-11-16

[5]
Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke.

Cochrane Database Syst Rev. 2016-3-21

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[7]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[8]
Reading aids for adults with low vision.

Cochrane Database Syst Rev. 2018-4-17

[9]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[10]
Withdrawal or continuation of cholinesterase inhibitors or memantine or both, in people with dementia.

Cochrane Database Syst Rev. 2021-2-3

本文引用的文献

[1]
Continuous data capture of gait and mobility metrics using wearable devices for postoperative monitoring in common elective orthopaedic procedures of the hip, knee, and spine: a scoping review.

J Orthop Surg Res. 2023-10-31

[2]
Recognizing Human Activity of Daily Living Using a Flexible Wearable for 3D Spine Pose Tracking.

Sensors (Basel). 2023-2-12

[3]
A Smart Shoe Insole to Monitor Frail Older Adults' Walking Speed: Results of Two Evaluation Phases Completed in a Living Lab and Through a 12-Week Pilot Study.

JMIR Mhealth Uhealth. 2021-7-5

[4]
An Unobtrusive Human Activity Recognition System Using Low Resolution Thermal Sensors, Machine and Deep Learning.

IEEE Trans Biomed Eng. 2023-1

[5]
Wearable Devices in Health Monitoring from the Environmental towards Multiple Domains: A Survey.

Sensors (Basel). 2021-3-18

[6]
Unobtrusive Health Monitoring in Private Spaces: The Smart Home.

Sensors (Basel). 2021-1-28

[7]
Outdoor Walking Speeds of Apparently Healthy Adults: A Systematic Review and Meta-analysis.

Sports Med. 2021-1

[8]
Unobtrusive Health Monitoring in Private Spaces: The Smart Vehicle.

Sensors (Basel). 2020-4-25

[9]
Objective evaluation of postoperative changes in real-life activity levels in the postoperative course of lumbar spinal surgery using wearable trackers.

BMC Musculoskelet Disord. 2020-2-4

[10]
Agreement Analysis between Vive and Vicon Systems to Monitor Lumbar Postural Changes.

Sensors (Basel). 2019-8-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索