Zhou Yong, Prakash Priyanka S, Liang Hong, Gorfe Alemayehu A, Hancock John F
Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030.
Graduate School of Biological Sciences, MD Anderson Cancer Center and University of Texas Health Science Center, Houston, TX 77030.
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2014605118.
KRAS interacts with the inner leaflet of the plasma membrane (PM) using a hybrid anchor that comprises a lysine-rich polybasic domain (PBD) and a C-terminal farnesyl chain. Electrostatic interactions have been envisaged as the primary determinant of interactions between KRAS and membranes. Here, we integrated molecular dynamics (MD) simulations and superresolution spatial analysis in mammalian cells and systematically compared four equally charged KRAS anchors: the wild-type farnesyl hexa-lysine and engineered mutants comprising farnesyl hexa-arginine, geranylgeranyl hexa-lysine, and geranylgeranyl hexa-arginine. MD simulations show that these equally charged KRAS mutant anchors exhibit distinct interactions and packing patterns with different phosphatidylserine (PtdSer) species, indicating that prenylated PBD-bilayer interactions extend beyond electrostatics. Similar observations were apparent in intact cells, where each anchor exhibited binding specificities for PtdSer species with distinct acyl chain compositions. Acyl chain composition determined responsiveness of the spatial organization of different PtdSer species to diverse PM perturbations, including transmembrane potential, cholesterol depletion, and PM curvature. In consequence, the spatial organization and PM binding of each KRAS anchor precisely reflected the behavior of its preferred PtdSer ligand to these same PM perturbations. Taken together these results show that small GTPase PBD-prenyl anchors, such as that of KRAS, have the capacity to encode binding specificity for specific acyl chains as well as lipid headgroups, which allow differential responses to biophysical perturbations that may have biological and signaling consequences for the anchored GTPase.
KRAS通过一种混合锚定结构与质膜(PM)的内小叶相互作用,该混合锚定结构由富含赖氨酸的多碱性结构域(PBD)和C端法尼基链组成。静电相互作用被认为是KRAS与膜之间相互作用的主要决定因素。在此,我们在哺乳动物细胞中整合了分子动力学(MD)模拟和超分辨率空间分析,并系统地比较了四种带等量电荷的KRAS锚定结构:野生型法尼基六赖氨酸以及包含法尼基六精氨酸、香叶基香叶基六赖氨酸和香叶基香叶基六精氨酸的工程突变体。MD模拟表明,这些带等量电荷的KRAS突变体锚定结构与不同的磷脂酰丝氨酸(PtdSer)种类表现出不同的相互作用和堆积模式,这表明异戊二烯化的PBD-双层相互作用超出了静电作用。在完整细胞中也有类似的观察结果,其中每种锚定结构对具有不同酰基链组成的PtdSer种类表现出结合特异性。酰基链组成决定了不同PtdSer种类的空间组织对多种质膜扰动的反应性,包括跨膜电位、胆固醇耗竭和质膜曲率。因此,每种KRAS锚定结构的空间组织和质膜结合精确反映了其偏好的PtdSer配体对这些相同质膜扰动的行为。综合这些结果表明,小GTP酶PBD-异戊二烯锚定结构,如KRAS的锚定结构,有能力编码对特定酰基链以及脂质头部基团的结合特异性,这使得对生物物理扰动有不同的反应,而这些扰动可能对锚定的GTP酶产生生物学和信号传导后果。