Suppr超能文献

一种新型的异戊烯基-多碱性结构域密码决定了 K-Ras 膜锚定蛋白的脂质结合特异性。

A novel prenyl-polybasic domain code determines lipid-binding specificity of the K-Ras membrane anchor.

机构信息

Department of Integrative Biology and Pharmacology McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, U.S.A.

出版信息

Small GTPases. 2020 May;11(3):220-224. doi: 10.1080/21541248.2017.1379583. Epub 2018 Jan 15.

Abstract

Ras proteins must localize to the plasma membrane (PM) for biological function. The membrane anchor of the K-Ras4B isoform comprises a farnesylated and methylated C-terminal cysteine together with an adjacent hexa-lysine polybasic domain (PBD). Traditionally, polybasic sequences have been thought to interact electrostatically with negatively charged membranes showing no specificity for anionic lipid head groups. By contrast we recently showed that the K-Ras membrane anchor actually exhibits a very high degree of specificity for phosphatidylserine (PtdSer). The selectivity for PtdSer is determined by a combinatorial code comprising the PBD sequence plus the prenyl anchor. Lipid binding specificity is therefore altered by PBD point mutations that in turn modulate signaling output. For example, mutating Lys177 or Lys178 to glutamine switches K-Ras4B lipid affinity from PtdSer to phosphoinositol 4,5-bisphosphate (PIP). Changing the lipid anchor from farnesyl to geranylgeranyl or the PBD lysines to arginines also changes lipid binding specificity. All-atom molecular dynamics simulations reveal the structural basis for these K-Ras anchor lipid-binding preferences. Here we examine the PM interactions of a series of geranylgeranylated PBD mutants and provide further evidence that the precise PBD sequence and prenyl lipid determines lipid sorting specificity of the K-Ras anchor and hence biological function.

摘要

Ras 蛋白必须定位于质膜 (PM) 才能发挥生物学功能。K-Ras4B 同工型的膜锚由一个法尼基化和甲基化的 C 末端半胱氨酸以及相邻的六赖氨酸多碱性结构域 (PBD) 组成。传统上,多碱性序列被认为与带负电荷的膜通过静电相互作用,对阴离子脂质头基没有特异性。相比之下,我们最近表明,K-Ras 膜锚实际上对磷脂酰丝氨酸 (PtdSer) 表现出非常高的特异性。对 PtdSer 的选择性由包含 PBD 序列和 prenyl 锚的组合密码决定。因此,脂质结合特异性会被 PBD 点突变改变,从而调节信号输出。例如,将赖氨酸 177 或赖氨酸 178 突变为谷氨酰胺会将 K-Ras4B 的脂质亲和力从 PtdSer 切换为磷脂酰肌醇 4,5-二磷酸 (PIP)。将脂质锚从法尼基化改为香叶基香叶基化或 PBD 赖氨酸改为精氨酸也会改变脂质结合特异性。全原子分子动力学模拟揭示了这些 K-Ras 锚脂质结合偏好的结构基础。在这里,我们研究了一系列香叶基化 PBD 突变体的 PM 相互作用,并提供了进一步的证据,表明精确的 PBD 序列和 prenyl 脂质决定了 K-Ras 锚的脂质分选特异性,从而决定了生物学功能。

相似文献

7
Deciphering lipid codes: K-Ras as a paradigm.解析脂质密码:以 K-Ras 为例。
Traffic. 2018 Mar;19(3):157-165. doi: 10.1111/tra.12541. Epub 2017 Dec 10.

引用本文的文献

2
RAS GTPases and Interleaflet Coupling in the Plasma Membrane.RAS GTPases 和质膜中的双层间偶联。
Cold Spring Harb Perspect Biol. 2023 Sep 1;15(9):a041414. doi: 10.1101/cshperspect.a041414.

本文引用的文献

5
Ras nanoclusters: Versatile lipid-based signaling platforms.Ras纳米簇:多功能脂质信号平台。
Biochim Biophys Acta. 2015 Apr;1853(4):841-9. doi: 10.1016/j.bbamcr.2014.09.008. Epub 2014 Sep 16.
9
A comprehensive survey of Ras mutations in cancer.癌症中 Ras 突变的全面调查。
Cancer Res. 2012 May 15;72(10):2457-67. doi: 10.1158/0008-5472.CAN-11-2612.
10
Ras trafficking, localization and compartmentalized signalling.Ras 转运、定位和区室化信号转导。
Semin Cell Dev Biol. 2012 Apr;23(2):145-53. doi: 10.1016/j.semcdb.2011.09.002. Epub 2011 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验