Farhadi Arash, Sigmund Felix, Westmeyer Gil Gregor, Shapiro Mikhail G
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Mater. 2021 May;20(5):585-592. doi: 10.1038/s41563-020-00883-3. Epub 2021 Feb 1.
Many questions in basic biology and medicine require the ability to visualize the function of specific cells and molecules inside living organisms. In this context, technologies such as ultrasound, optoacoustics and magnetic resonance provide non-invasive imaging access to deep-tissue regions, as used in many laboratories and clinics to visualize anatomy and physiology. In addition, recent work has enabled these technologies to image the location and function of specific cells and molecules inside the body by coupling the physics of sound waves, nuclear spins and light absorption to unique protein-based materials. These materials, which include air-filled gas vesicles, capsid-like nanocompartments, pigment-producing enzymes and transmembrane transporters, enable new forms of biomolecular and cellular contrast. The ability of these protein-based contrast agents to be genetically encoded and produced by cells creates opportunities for unprecedented in vivo studies of cellular function, while their amenability to genetic engineering enables atomic-level design of their physical, chemical and biological properties.
基础生物学和医学中的许多问题都需要具备可视化活生物体内特定细胞和分子功能的能力。在这种情况下,诸如超声、光声和磁共振等技术可提供对深部组织区域的非侵入性成像,许多实验室和诊所都使用这些技术来可视化解剖结构和生理机能。此外,最近的研究工作通过将声波、核自旋和光吸收的物理原理与独特的基于蛋白质的材料相结合,使这些技术能够对体内特定细胞和分子的位置及功能进行成像。这些材料包括充气气体囊泡、衣壳样纳米隔室、色素生成酶和跨膜转运蛋白,可实现新形式的生物分子和细胞对比度。这些基于蛋白质的造影剂能够被细胞进行基因编码并由细胞产生,这为细胞功能的前所未有的体内研究创造了机会,而它们对基因工程的适应性则使其能够在原子水平上设计其物理、化学和生物学特性。