Patrian Marta, Hasler Marco, Banda-Vázquez Jesús A, Borisova Evgenia, Fuenzalida Werner Juan Pablo, Costa Rubén D
Technical University of Munich, Campus Straubing for Sustainability and Biotechnology, Chair of Biogenic Functional Materials, Schulgasse, 22, Straubing 94315, Germany.
ACS Mater Lett. 2025 Jul 25;7(9):3041-3048. doi: 10.1021/acsmaterialslett.5c00653. eCollection 2025 Sep 1.
Proteins are at the forefront of materials science, with implementations in optical, electrical, and structural materials for transformative and sustainable technologies. Within the biohybrid light-emitting diode (BioHLED) concept, replacing toxic and/or rare photon filters with classical β-barrel fluorescent proteins (FPs) that must withstand irradiation, temperature, oxidation, and dehydration stress, the question if FPs from extremophiles and/or living fossils might be better for lighting applications arises. We addressed this by introducing a thermostable prokaryotic FP, whose inherent promiscuity enables the design of tunable emitting proteins. Three milestones were reached: () a comprehensive phylogeny of phycobiliproteins from a large data set (182 proteins from 29 thermophiles) to identify the most versatile zombie-like phycobiliprotein (highly ancestral character), () heterologous expression of this phycobiliprotein (SPritZ) in and further enhancement via rational mutagenesis into a brighter and more thermal-resilient variant (eSPritZ), and () 2.5-fold stable BioHLEDs comparing SPritZ vs eSPritZ in hydroxypropyl cellulose coatings.
蛋白质处于材料科学的前沿,在用于变革性和可持续技术的光学、电气和结构材料中得到应用。在生物杂交发光二极管(BioHLED)概念中,用必须经受辐射、温度、氧化和脱水应激的经典β-桶状荧光蛋白(FPs)取代有毒和/或稀有的光子滤波器,于是出现了来自嗜极端微生物和/或活化石的FPs是否更适合照明应用的问题。我们通过引入一种热稳定的原核FP来解决这个问题,其固有的混杂性使得能够设计出可调节发光的蛋白质。实现了三个里程碑:()从一个大数据集(来自29个嗜热菌的182种蛋白质)对藻胆蛋白进行全面系统发育分析,以鉴定出最通用的类似僵尸的藻胆蛋白(高度祖先特征),()在大肠杆菌中异源表达这种藻胆蛋白(SPritZ),并通过理性诱变进一步增强为更亮且热弹性更强的变体(eSPritZ),以及()在羟丙基纤维素涂层中比较SPritZ与eSPritZ的2.5倍稳定的BioHLED。