Suppr超能文献

超越数据的健康公平:电子健康记录中医疗保健工作者对种族、民族和语言数据收集的看法。

Health Equity Beyond Data: Health Care Worker Perceptions of Race, Ethnicity, and Language Data Collection in Electronic Health Records.

机构信息

Department of Sociology, California State University, Fullerton, CA.

出版信息

Med Care. 2021 May 1;59(5):379-385. doi: 10.1097/MLR.0000000000001507.

Abstract

BACKGROUND

Recent research and policy initiatives propose addressing the social determinants of health within clinical settings. One such strategy is the expansion of routine data collection on patient Race, Ethnicity, and Language (REAL) within electronic health records (EHRs). Although previous research has examined the general views of providers and patients on REAL data, few studies consider health care workers' perceptions of this data collection directly at the point of care, including how workers understand REAL data in relation to health equity.

OBJECTIVE

This qualitative study examines a large integrated delivery system's implementation of REAL data collection, focusing on health care workers' understanding of REAL and its impact on data's integration within EHRs.

RESULTS

Providers, staff, and administrators expressed apprehension over REAL data collection due to the following: (1) disagreement over data's significance, including the expected purpose of collecting REAL items; (2) perceived barriers to data retrieval, such as the lack of standardization across providers and national tensions over race and immigration; and (3) uncertainty regarding data's use (clinical decision making vs. system research) and dissemination (with whom the data may be shared; eg, public agencies, other providers, and insurers).

CONCLUSION

Emerging racial disparities associated with COVID-19 highlight the high stakes of REAL data collection. However, numerous barriers to health equity remain. Health care workers need greater institutional support for REAL data and related EHR initiatives. Despite data collection's central importance to policy objectives of disparity reduction, data mandates alone may be insufficient for achieving health equity.

摘要

背景

最近的研究和政策举措提议在临床环境中解决健康的社会决定因素。其中一种策略是扩大电子健康记录(EHR)中对患者种族、民族和语言(REAL)的常规数据收集。尽管先前的研究已经考察了提供者和患者对 REAL 数据的一般看法,但很少有研究直接在护理点考虑医疗保健工作者对这种数据收集的看法,包括工作人员如何理解 REAL 数据与健康公平的关系。

目的

这项定性研究考察了一个大型综合交付系统实施 REAL 数据收集的情况,重点是医疗保健工作者对 REAL 的理解及其对 EHR 中数据集成的影响。

结果

提供者、工作人员和管理人员对 REAL 数据收集表示担忧,原因如下:(1)对数据意义的分歧,包括收集 REAL 项的预期目的;(2)数据检索的感知障碍,例如提供者之间缺乏标准化以及种族和移民问题上的国家紧张局势;(3)对数据使用(临床决策制定与系统研究)和传播(数据可能与谁共享;例如,公共机构、其他提供者和保险公司)的不确定性。

结论

与 COVID-19 相关的新出现的种族差异突显了 REAL 数据收集的高风险。然而,健康公平仍然存在许多障碍。医疗保健工作者需要对 REAL 数据和相关 EHR 计划有更大的机构支持。尽管数据收集对减少差异的政策目标至关重要,但仅数据收集可能不足以实现健康公平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验