Suppr超能文献

液体聚硫树脂-粘土纳米复合材料的动力学建模与降解研究。

Kinetic Modeling and Degradation Study of Liquid Polysulfide Resin-Clay Nanocomposite.

机构信息

Department of Chemistry, Amirkabir University of Technology, Tehran 15875-4413, Iran.

Department of Polymer and Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran 15847-43311, Iran.

出版信息

Molecules. 2021 Jan 26;26(3):635. doi: 10.3390/molecules26030635.

Abstract

Kinetic modeling and degradation study of liquid polysulfide (LPS)/clay nanocomposite is possible through Ozawa-Flynn-Wall (OFW) and Kissinger methods. Comparing the results of these models with experimental data leads to provide an accurate degradation kinetic evaluation of these materials. To this aim, the morphology and distribution of clay nanoparticles (CNPs) within the LPS matrix were investigated using Field Emission Scanning Electron Microscopy (FESEM) and X-ray diffraction (XRD). To evaluate the interaction between the LPS and the CNPs, the Fourier transform infrared (FTIR) identification was utilized. Furthermore, to investigate the kinetics of degradation, the thermal gravimetric analysis (TGA) and derivative thermogravimetry (DTG) of the samples were used in the nitrogen atmosphere with the help of Kissinger and Ozawa-Flynn-Wall (OFW) models. The characterization results confirmed the homogenous dispersion of the CNPs into the LPS matrix. In addition, the presence of CNPs increased the thermal stability and activation energy (E) of the samples at different conversion rates. Moreover, the OFW method was highly consistent with the experimental data and provided an appropriate fit for the degradation kinetics.

摘要

通过奥扎瓦-弗林-沃尔(Ozawa-Flynn-Wall,OFW)和 Kissinger 方法可以对液态多硫化物(LPS)/粘土纳米复合材料进行动力学建模和降解研究。通过比较这些模型的结果与实验数据,可以对这些材料的降解动力学进行准确评估。为此,使用场发射扫描电子显微镜(FESEM)和 X 射线衍射(XRD)研究了粘土纳米颗粒(CNP)在 LPS 基质中的形态和分布。为了评估 LPS 和 CNP 之间的相互作用,利用傅里叶变换红外(FTIR)鉴定进行了评估。此外,为了研究降解动力学,在氮气气氛下使用热重分析(TGA)和导数热重分析(DTG),借助 Kissinger 和 Ozawa-Flynn-Wall(OFW)模型对样品进行了分析。表征结果证实了 CNP 在 LPS 基质中的均匀分散。此外,CNP 的存在增加了样品在不同转化率下的热稳定性和活化能(E)。此外,OFW 方法与实验数据高度一致,为降解动力学提供了合适的拟合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/102b/7865745/38676d6c3d11/molecules-26-00635-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验