Graduate Program of Neuroscience, The University of Western Ontario , London, Canada.
Translational Neuroscience Research Group, Robarts Research Institute, The University of Western Ontario , London, Canada.
Cell Cycle. 2021 Feb;20(4):417-433. doi: 10.1080/15384101.2021.1877936. Epub 2021 Feb 2.
Microglia proliferation is critical for proper development and function of the central nervous system (CNS), while dysregulation of proliferation contributes to pathology. We recently reported that male inducible nitric oxide synthase knockout (iNOS) mice displayed significantly more proliferating microglia in their postnatal cortex than age-matched wildtype (WT) male mice. Moreover, nitric oxide (NO) signaling in mouse microglia greatly upregulates calcium entry through transient receptor potential vanilloid type 2 (TRPV2) channels. Considering that TRPV2 activity restricts astrocytic proliferation within glioma tissues, we investigated the roles of iNOS/NO signaling and TRPV2 expression in the regulation of microglial proliferation in vitro using assays of calcium imaging, immunocytochemistry, western blot, and polymerase chain reaction. Results showed that non-dividing microglia exhibited substantially higher expression of TRPV2 on the plasma membrane and significantly larger calcium influx through TRPV2 channels in comparison to dividing microglia. Additionally, non-dividing WT microglia exhibited significantly more NO production than dividing WT microglia. Furthermore, the NO-donor NOC18 increased the nuclear translocation of nuclear factor of activated T-cells cytoplasmic 2 (NFATC2) and the mRNA of the cyclin-dependent kinase inhibitor p21 and decreased the percentage of dividing WT and iNOS microglia in culture. Importantly, the presence of the TRPV2 inhibitor tranilast abolished these effects of NOC18. Together, results from this study indicated that iNOS/NO signaling inhibits microglial proliferation through TRPV2-mediated calcium influx, nuclear translocation of the transcription factor NFATC2, and p21 expression. [Figure: see text].
小胶质细胞的增殖对于中枢神经系统 (CNS) 的正常发育和功能至关重要,而增殖的失调会导致病理学改变。我们最近报道称,雄性诱导型一氧化氮合酶敲除 (iNOS) 小鼠在出生后的皮质中显示出比同龄野生型 (WT) 雄性小鼠更多的增殖小胶质细胞。此外,小鼠小胶质细胞中的一氧化氮 (NO) 信号通过瞬时受体电位香草酸类型 2 (TRPV2) 通道大大增加钙内流。考虑到 TRPV2 活性限制了星形胶质细胞在神经胶质瘤组织中的增殖,我们使用钙成像、免疫细胞化学、western blot 和聚合酶链反应等实验,研究了 iNOS/NO 信号和 TRPV2 表达在体外调节小胶质细胞增殖中的作用。结果表明,与分裂的小胶质细胞相比,非分裂的小胶质细胞在质膜上显示出更高的 TRPV2 表达,并且通过 TRPV2 通道的钙内流显著增加。此外,非分裂的 WT 小胶质细胞比分裂的 WT 小胶质细胞表现出明显更高的 NO 产生。此外,NO 供体 NOC18 增加了激活 T 细胞胞浆核因子 2 (NFATC2) 的核易位和细胞周期蛋白依赖性激酶抑制剂 p21 的 mRNA,并减少了培养物中分裂的 WT 和 iNOS 小胶质细胞的百分比。重要的是,TRPV2 抑制剂曲尼司特消除了 NOC18 的这些作用。总之,这项研究的结果表明,iNOS/NO 信号通过 TRPV2 介导的钙内流、转录因子 NFATC2 的核易位和 p21 的表达抑制小胶质细胞增殖。[图:见正文]。