Centre for Image Analysis, Uppsala University, Uppsala, 75124, Sweden.
Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, 75124, Sweden.
Cytometry A. 2019 Apr;95(4):366-380. doi: 10.1002/cyto.a.23701. Epub 2018 Dec 19.
Artificial intelligence, deep convolutional neural networks, and deep learning are all niche terms that are increasingly appearing in scientific presentations as well as in the general media. In this review, we focus on deep learning and how it is applied to microscopy image data of cells and tissue samples. Starting with an analogy to neuroscience, we aim to give the reader an overview of the key concepts of neural networks, and an understanding of how deep learning differs from more classical approaches for extracting information from image data. We aim to increase the understanding of these methods, while highlighting considerations regarding input data requirements, computational resources, challenges, and limitations. We do not provide a full manual for applying these methods to your own data, but rather review previously published articles on deep learning in image cytometry, and guide the readers toward further reading on specific networks and methods, including new methods not yet applied to cytometry data. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
人工智能、深度卷积神经网络和深度学习都是专业术语,它们越来越多地出现在科学报告以及大众媒体中。在这篇综述中,我们重点介绍深度学习以及它在细胞和组织样本显微镜图像数据中的应用。首先通过与神经科学进行类比,我们旨在为读者概述神经网络的关键概念,并了解深度学习与从图像数据中提取信息的更经典方法有何不同。我们旨在提高对这些方法的理解,同时强调关于输入数据要求、计算资源、挑战和局限性的注意事项。我们没有提供将这些方法应用于自己数据的完整手册,而是回顾了之前关于图像细胞术深度学习的文章,并引导读者进一步阅读特定网络和方法的相关内容,包括尚未应用于细胞术数据的新方法。© 2018 作者。细胞术由 Wiley 期刊出版公司代表国际细胞术促进协会出版。