文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

可激活聚合物纳米激动剂用于癌症的二次近红外光热免疫治疗。

Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer.

机构信息

School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.

出版信息

Nat Commun. 2021 Feb 2;12(1):742. doi: 10.1038/s41467-021-21047-0.


DOI:10.1038/s41467-021-21047-0
PMID:33531498
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7854754/
Abstract

Nanomedicine in combination with immunotherapy offers opportunities to treat cancer in a safe and effective manner; however, remote control of immune response with spatiotemporal precision remains challenging. We herein report a photothermally activatable polymeric pro-nanoagonist (APNA) that is specifically regulated by deep-tissue-penetrating second near-infrared (NIR-II) light for combinational photothermal immunotherapy. APNA is constructed from covalent conjugation of an immunostimulant onto a NIR-II semiconducting transducer through a labile thermo-responsive linker. Upon NIR-II photoirradiation, APNA mediates photothermal effect, which not only triggers tumor ablation and immunogenic cell death but also initiates the cleavage of thermolabile linker to liberate caged agonist for in-situ immune activation in deep solid tumor (8 mm). Such controlled immune regulation potentiates systemic antitumor immunity, leading to promoted cytotoxic T lymphocytes and helper T cell infiltration in distal tumor, lung and liver to inhibit cancer metastasis. Thereby, the present work illustrates a generic strategy to prepare pro-immunostimulants for spatiotemporal regulation of cancer nano-immunotherapy.

摘要

纳米医学与免疫疗法相结合,为安全有效地治疗癌症提供了机会;然而,如何实现具有时空精准性的免疫反应远程控制仍然具有挑战性。本文报道了一种光热激活型聚合物前纳米激动剂(APNA),它可通过组织穿透性深的第二近红外(NIR-II)光来特异性调控,用于联合光热免疫治疗。APNA 通过将免疫刺激剂共价连接到 NIR-II 半导体换能器上,通过不稳定的热响应连接体构建而成。在近红外 II 光照射下,APNA 介导光热效应,不仅触发肿瘤消融和免疫原性细胞死亡,还引发热不稳定连接体的裂解,释放出笼状激动剂,在深部实体肿瘤(8mm)中进行原位免疫激活。这种受控的免疫调节增强了系统抗肿瘤免疫力,导致在远端肿瘤、肺和肝脏中促进细胞毒性 T 淋巴细胞和辅助性 T 细胞浸润,从而抑制癌症转移。因此,本工作说明了一种用于癌症纳米免疫治疗时空调控的前免疫刺激剂的通用制备策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/79d2ba75532a/41467_2021_21047_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/ec0147c34f86/41467_2021_21047_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/e1c018d11176/41467_2021_21047_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/443ecba56cf5/41467_2021_21047_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/4168e9cdbe39/41467_2021_21047_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/acc216770bb2/41467_2021_21047_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/79d2ba75532a/41467_2021_21047_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/ec0147c34f86/41467_2021_21047_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/e1c018d11176/41467_2021_21047_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/443ecba56cf5/41467_2021_21047_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/4168e9cdbe39/41467_2021_21047_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/acc216770bb2/41467_2021_21047_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a922/7854754/79d2ba75532a/41467_2021_21047_Fig6_HTML.jpg

相似文献

[1]
Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer.

Nat Commun. 2021-2-2

[2]
Second Near-Infrared Light-Activatable Polymeric Nanoantagonist for Photothermal Immunometabolic Cancer Therapy.

Adv Mater. 2021-9

[3]
Activatable Immunoprotease Nanorestimulator for Second Near-Infrared Photothermal Immunotherapy of Cancer.

ACS Nano. 2023-5-9

[4]
Near-Infrared II Phototherapy Induces Deep Tissue Immunogenic Cell Death and Potentiates Cancer Immunotherapy.

ACS Nano. 2019-9-30

[5]
Second Near-Infrared Photothermal Semiconducting Polymer Nanoadjuvant for Enhanced Cancer Immunotherapy.

Adv Mater. 2021-1

[6]
Tumor-Microenvironment-Activatable Polymer Nano-Immunomodulator for Precision Cancer Photoimmunotherapy.

Adv Mater. 2022-2

[7]
Semiconducting Polymer Nanomaterials as Near-Infrared Photoactivatable Protherapeutics for Cancer.

Acc Chem Res. 2020-4-21

[8]
A Polymer Multicellular Nanoengager for Synergistic NIR-II Photothermal Immunotherapy.

Adv Mater. 2021-4

[9]
Extracellular matrix-degrading STING nanoagonists for mild NIR-II photothermal-augmented chemodynamic-immunotherapy.

J Nanobiotechnology. 2022-1-6

[10]
An Activatable Dual Polymer Nanosystem for Photoimmunotherapy and Metabolic Modulation of Deep-Seated Tumors.

Adv Healthc Mater. 2024-4

引用本文的文献

[1]
Engineering noncovalent π-stacked organic framework for intrinsic near-infrared photoactivated drug delivery.

Sci Adv. 2025-8-29

[2]
Sonoafterglow nanoprobes for deep-tissue imaging of peroxynitrite.

Nat Protoc. 2025-6-26

[3]
Ablation combined with video-assisted thoracic surgery hybrid technique for multiple primary lung cancer.

iScience. 2025-5-20

[4]
NIR-responsive tissue-adaptive hydrogel for accelerating healing of seawater-immersed wounds.

Mater Today Bio. 2025-5-30

[5]
Exploration of the role of immune cells and cell therapy in hepatocellular carcinoma.

Front Immunol. 2025-4-16

[6]
Long-term in vivo immune tracking nanoplatform based on AgS quantum dots for the photothermal immunotherapy of breast cancer.

BMC Biol. 2025-4-28

[7]
Engineering the Immune Response to Biomaterials.

Adv Sci (Weinh). 2025-5

[8]
NIR-II-activated whole-cell vaccine with ultra-efficient semiconducting diradical oligomers for breast carcinoma growth and metastasis inhibition.

Acta Pharm Sin B. 2025-2

[9]
Pyridinium Rotor Strategy toward a Robust Photothermal Agent for STING Activation and Multimodal Image-Guided Immunotherapy for Triple-Negative Breast Cancer.

J Am Chem Soc. 2025-3-5

[10]
Two-Dimensional MXenes Surface Engineering Nanoplatform for PTT-Chemotherapy Synergistic Tumor Therapy.

Int J Nanomedicine. 2025-2-14

本文引用的文献

[1]
Molecular Fluorescence and Photoacoustic Imaging in the Second Near-Infrared Optical Window Using Organic Contrast Agents.

Adv Biosyst. 2018-5

[2]
Supramolecular prodrug hydrogelator as an immune booster for checkpoint blocker-based immunotherapy.

Sci Adv. 2020-4-29

[3]
Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy.

Nat Commun. 2020-4-20

[4]
Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses.

Sci Adv. 2020-3-4

[5]
Engineering Stimuli-Activatable Boolean Logic Prodrug Nanoparticles for Combination Cancer Immunotherapy.

Adv Mater. 2020-2-12

[6]
Semiconducting Polymer Nanomaterials as Near-Infrared Photoactivatable Protherapeutics for Cancer.

Acc Chem Res. 2020-4-21

[7]
Sheddable Prodrug Vesicles Combating Adaptive Immune Resistance for Improved Photodynamic Immunotherapy of Cancer.

Nano Lett. 2020-1-8

[8]
The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer.

Nat Commun. 2019-10-15

[9]
Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses.

Chem Soc Rev. 2019-11-11

[10]
Near-Infrared II Phototherapy Induces Deep Tissue Immunogenic Cell Death and Potentiates Cancer Immunotherapy.

ACS Nano. 2019-9-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索