Kupatt Christian, Windisch Alina, Moretti Alessandra, Wolf Eckhard, Wurst Wolfgang, Walter Maggie C
Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
DZHK (German Center for Cardiovascular Research), Munich Heart Alliance, Munich, Germany.
Gene Ther. 2021 Sep;28(9):542-548. doi: 10.1038/s41434-021-00222-4. Epub 2021 Feb 2.
Mutations in Dystrophin, one of the largest proteins in the mammalian body, are causative for a severe form of muscle disease, Duchenne Muscular Dystrophy (DMD), affecting not only skeletal muscle, but also the heart. In particular, exons 45-52 constitute a hotspot for DMD mutations. A variety of molecular therapies have been developed, comprising vectors encoding micro- and minidystrophins as well as utrophin, a protein with partially overlapping functions. With the advent of the CRISPR-Cas9-nuclease, genome editing offers a novel option of correction of the disease-cuasing mutations. Full restoration of the healthy gene by homology directed repair is a rare event. However, non-homologous end-joining (NHEJ) may restore the reading frame by causing exon excision. This approach has first been demonstrated in mice and then translated to large animals (dogs, pigs). This review discusses the potential opportunities and limitations of genome editing in DMD, including the generation of appropriate animal models as well as new developments in genome editing tools.
肌营养不良蛋白是哺乳动物体内最大的蛋白质之一,其突变是导致严重肌肉疾病——杜氏肌营养不良症(DMD)的原因,该病不仅影响骨骼肌,还会影响心脏。特别是,外显子45 - 52是DMD突变的热点区域。已经开发了多种分子疗法,包括编码微型和小型肌营养不良蛋白以及抗肌萎缩蛋白(一种功能部分重叠的蛋白质)的载体。随着CRISPR - Cas9核酸酶的出现,基因组编辑为纠正致病突变提供了一种新的选择。通过同源定向修复完全恢复健康基因的情况很少见。然而,非同源末端连接(NHEJ)可能通过导致外显子切除来恢复阅读框。这种方法首先在小鼠中得到证实,然后应用于大型动物(狗、猪)。本文综述讨论了DMD基因组编辑的潜在机会和局限性,包括合适动物模型的建立以及基因组编辑工具的新进展。