Suppr超能文献

1,4-丁二醇热塑性聚氨酯作为3D生物打印应用新型材料的验证

Validation of the 1,4-butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications.

作者信息

Chocarro-Wrona Carlos, de Vicente Juan, Antich Cristina, Jiménez Gema, Martínez-Moreno Daniel, Carrillo Esmeralda, Montañez Elvira, Gálvez-Martín Patricia, Perán Macarena, López-Ruiz Elena, Marchal Juan Antonio

机构信息

Biosanitary Research Institute of Granada (ibs.GRANADA) University Hospitals of Granada-University of Granada Granada Spain.

Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada Granada Spain.

出版信息

Bioeng Transl Med. 2020 Nov 14;6(1):e10192. doi: 10.1002/btm2.10192. eCollection 2021 Jan.

Abstract

Tissue engineering (TE) seeks to fabricate implants that mimic the mechanical strength, structure, and composition of native tissues. Cartilage TE requires the development of functional personalized implants with cartilage-like mechanical properties capable of sustaining high load-bearing environments to integrate into the surrounding tissue of the cartilage defect. In this study, we evaluated the novel 1,4-butanediol thermoplastic polyurethane elastomer (b-TPUe) derivative filament as a 3D bioprinting material with application in cartilage TE. The mechanical behavior of b-TPUe in terms of friction and elasticity were examined and compared with human articular cartilage, PCL, and PLA. Moreover, infrapatellar fat pad-derived human mesenchymal stem cells (MSCs) were bioprinted together with scaffolds. in vitro cytotoxicity, proliferative potential, cell viability, and chondrogenic differentiation were analyzed by Alamar blue assay, SEM, confocal microscopy, and RT-qPCR. Moreover, in vivo biocompatibility and host integration were analyzed. b-TPUe demonstrated a much closer compression and shear behavior to native cartilage than PCL and PLA, as well as closer tribological properties to cartilage. Moreover, b-TPUe bioprinted scaffolds were able to maintain proper proliferative potential, cell viability, and supported MSCs chondrogenesis. Finally, studies revealed no toxic effects 21 days after scaffolds implantation, extracellular matrix deposition and integration within the surrounding tissue. This is the first study that validates the biocompatibility of b-TPUe for 3D bioprinting. Our findings indicate that this biomaterial can be exploited for the automated biofabrication of artificial tissues with tailorable mechanical properties including the great potential for cartilage TE applications.

摘要

组织工程学(TE)旨在制造出能够模拟天然组织的机械强度、结构和组成的植入物。软骨组织工程需要开发具有类似软骨机械性能的功能性个性化植入物,以承受高负荷环境,从而融入软骨缺损周围的组织。在本研究中,我们评估了新型1,4 - 丁二醇热塑性聚氨酯弹性体(b - TPUe)衍生物细丝作为一种应用于软骨组织工程的3D生物打印材料。研究了b - TPUe在摩擦和弹性方面的力学行为,并与人类关节软骨、聚己内酯(PCL)和聚乳酸(PLA)进行了比较。此外,将髌下脂肪垫来源的人间充质干细胞(MSCs)与支架一起进行生物打印。通过阿拉玛蓝法、扫描电子显微镜(SEM)、共聚焦显微镜和逆转录定量聚合酶链反应(RT - qPCR)分析了体外细胞毒性、增殖潜力、细胞活力和软骨生成分化。此外,还分析了体内生物相容性和宿主整合情况。与PCL和PLA相比,b - TPUe在压缩和剪切行为上与天然软骨更为接近,在摩擦学性能上也与软骨更为接近。此外,b - TPUe生物打印的支架能够维持适当的增殖潜力、细胞活力,并支持MSCs的软骨生成。最后,研究表明在支架植入21天后没有毒性作用,周围组织中有细胞外基质沉积和整合。这是第一项验证b - TPUe用于3D生物打印的生物相容性的研究。我们的研究结果表明,这种生物材料可用于具有可定制机械性能的人工组织的自动化生物制造,在软骨组织工程应用方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db4/7823129/a8a77a8d4661/BTM2-6-e10192-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验