Suppr超能文献

全基因组规模代谢建模揭示了新冠病毒诱导的代谢变化及抗病毒靶点。

Genome-scale metabolic modeling reveals SARS-CoV-2-induced metabolic changes and antiviral targets.

作者信息

Cheng Kuoyuan, Martin-Sancho Laura, Pal Lipika R, Pu Yuan, Riva Laura, Yin Xin, Sinha Sanju, Nair Nishanth Ulhas, Chanda Sumit K, Ruppin Eytan

机构信息

Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.

Biological Sciences Graduate Program (BISI), University of Maryland, College Park, MD, USA.

出版信息

bioRxiv. 2021 Aug 25:2021.01.27.428543. doi: 10.1101/2021.01.27.428543.

Abstract

Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future evaluation, demonstrating host metabolism-targeting as a promising antiviral strategy.

摘要

在控制由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒引起的2019冠状病毒病(COVID-19)大流行方面已经取得了巨大进展。然而,有效的治疗选择仍然很少。药物重新利用和联合用药是满足这一迫切未满足医疗需求的切实可行策略。已知包括冠状病毒在内的病毒会劫持宿主代谢以促进病毒增殖,因此将宿主代谢作为靶点是一种很有前景的抗病毒方法。在这里,我们使用基因组规模代谢建模(GEM)对12个已发表的和人类患者的SARS-CoV-2感染基因表达数据集进行了综合分析,揭示了SARS-CoV-2感染期间复杂的宿主代谢重编程。接下来,我们应用基于GEM的代谢转化算法来预测对抗病毒诱导代谢变化的抗SARS-CoV-2靶点。我们使用已发表的药物和基因筛选数据以及通过在Caco-2细胞中进行小干扰RNA(siRNA)试验成功验证了这些靶点。通过进一步生成和分析瑞德西韦治疗的非洲绿猴肾细胞(Vero E6)样本的RNA测序数据,我们预测了与已批准的抗SARS-CoV-2药物瑞德西韦联合作用的代谢靶点。我们的研究为未来评估提供了临床数据支持的候选抗SARS-CoV-2靶点,证明将宿主代谢作为靶点是一种很有前景的抗病毒策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b6d/8394008/67d7114b1fc5/nihpp-2021.01.27.428543v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验