Porto Conte Ricerche s.r.l., S.P. 55 Porto Conte-Capo Caccia, Km 8.400 Loc. Tramariglio, Alghero, SS, Italy.
Sci Rep. 2024 Apr 4;14(1):7950. doi: 10.1038/s41598-024-57726-3.
SARS-CoV-2 burdens healthcare systems worldwide, yet specific drug-based treatments are still unavailable. Understanding the effects of SARS-CoV-2 on host molecular pathways is critical for providing full descriptions and optimizing therapeutic targets. The present study used Nuclear Magnetic Resonance-based metabolic footprinting to characterize the secreted cellular metabolite levels (exometabolomes) of Vero E6 cells in response to SARS-CoV-2 infection and to two candidate drugs (Remdesivir, RDV, and Azithromycin, AZI), either alone or in combination. SARS-CoV-2 infection appears to force VE6 cells to have increased glucose concentrations from extra-cellular medium and altered energetic metabolism. RDV and AZI, either alone or in combination, can modify the glycolic-gluconeogenesis pathway in the host cell, thus impairing the mitochondrial oxidative damage caused by the SARS-CoV-2 in the primary phase. RDV treatment appears to be associated with a metabolic shift toward the TCA cycle. Our findings reveal a metabolic reprogramming produced by studied pharmacological treatments that protects host cells against virus-induced metabolic damage, with an emphasis on the glycolytic-gluconeogenetic pathway. These findings may help researchers better understand the relevant biological mechanisms involved in viral infection, as well as the creation of mechanistic hypotheses for such candidate drugs, thereby opening up new possibilities for SARS-CoV-2 pharmacological therapy.
SARS-CoV-2 给全球的医疗系统带来了负担,但仍缺乏特定的基于药物的治疗方法。了解 SARS-CoV-2 对宿主分子途径的影响对于提供全面描述和优化治疗靶点至关重要。本研究使用基于核磁共振的代谢足迹法来描述 Vero E6 细胞在 SARS-CoV-2 感染以及两种候选药物(瑞德西韦(RDV)和阿奇霉素(AZI))单独或联合作用下对细胞外代谢产物(外代谢组)水平的反应。SARS-CoV-2 感染似乎迫使 VE6 细胞从细胞外培养基中增加葡萄糖浓度,并改变能量代谢。RDV 和 AZI 单独或联合使用可以改变宿主细胞中的糖酵解-糖异生途径,从而在早期阶段减轻 SARS-CoV-2 引起的线粒体氧化损伤。RDV 治疗似乎与三羧酸(TCA)循环的代谢转移有关。我们的研究结果揭示了受研究的药物治疗产生的代谢重编程,该重编程保护宿主细胞免受病毒引起的代谢损伤,重点是糖酵解-糖异生途径。这些发现可以帮助研究人员更好地理解病毒感染相关的生物学机制,以及这些候选药物的机制假设,从而为 SARS-CoV-2 的药理学治疗开辟新的可能性。