School of Chemical Engineering, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
Chemphyschem. 2021 Apr 7;22(7):684-692. doi: 10.1002/cphc.202000988. Epub 2021 Mar 5.
Self-assembled monolayers (SAMs) based on oligopeptides have garnered immense interest for a wide variety of innovative biomedical and electronic applications. However, to exploit their full potential, it is necessary to understand and control the surface chemistry of oligopeptides. Herein, we report on how different electrical potentials affect the adsorption kinetics, stability and surface coverage of charged oligopeptide SAMs on gold surfaces. Kinetic analysis using electrochemical surface plasmon resonance (e-SPR) reveals a slower oligopeptide adsorption rate at more positive or negative electrical potentials. Additional analysis of the potential-assisted formed SAMs by X-ray photoelectron spectroscopy demonstrates that an applied electrical potential has minimal effect on the packing density. These findings not only reveal that charged oligopeptides exhibit a distinct potential-assisted assembly behaviour but that an electrical potential offers another degree of freedom in controlling their adsorption rate.
基于寡肽的自组装单分子层 (SAMs) 在各种创新的生物医学和电子应用中引起了极大的兴趣。然而,要充分发挥它们的潜力,就有必要了解和控制寡肽的表面化学。在此,我们报告了不同的电势如何影响带电荷的寡肽 SAM 在金表面上的吸附动力学、稳定性和表面覆盖率。电化学表面等离子体共振 (e-SPR) 的动力学分析表明,在更正或更负的电势下,寡肽的吸附速率较慢。通过 X 射线光电子能谱对电位辅助形成的 SAM 进行的进一步分析表明,外加电场对组装密度的影响很小。这些发现不仅表明带电荷的寡肽表现出明显的电位辅助组装行为,而且电场为控制它们的吸附速率提供了另一个自由度。