Habarakadage Bingun, Rajendran Sabari, Ren Zhaoyang, Anderson Morgan J, Koehne Jessica, Gorla Lingaraju, Morita Shunya, Wu Sara, Hua Duy H, Li Jun
Department of Chemistry, Kansas State University, Manhattan, KS, 66502, USA.
Millennium Integration and Engineering Services (MEIS), Moffett Field, CA, 94035, USA; NASA Ames Research Center, Moffett Field, CA, 94035, USA.
Biosens Bioelectron. 2025 Apr 1;273:117193. doi: 10.1016/j.bios.2025.117193. Epub 2025 Jan 22.
Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity. Cleavage of these peptide substrates by proteases leads to an exponential decay in the alternating current voltammetry (ACV) signal. The protease activity is represented by the inverse of the decay time constant (1/τ), which is equal to (k/K)[CB] based on the heterogeneous Michaelis-Menton model. However, the thiol/Au chemisorption linking AEF-peptide to gold electrodes is susceptible to interference by the protease activation reagent dithiothreitol (DTT), causing the peptides to desorb from the Au surface during continuous ACV measurement. This induces a false signal decay, masking the protease activity and reducing the sensor sensitivity. To address this, DTT is removed after activating CB using centrifugal filtration while EDTA is incorporated to maintain the enzyme activity. This allows accurate CB proteolysis kinetics and clarifies the roles of EDTA and DTT in activation. The intrinsic substrate-dependent cleavage by CB to three different peptide substrates has been demonstrated with the MEA chip, showcasing the potential for rapid activity profiling of multiple proteases. The study highlights the importance of understanding the interference of active bioreagents to the thiol/Au interface in broad redox-tagged electrochemical biosensors.
蛋白酶在癌症等多种病症的不同阶段会过度表达,因此可作为疾病诊断的生物标志物。用于检测细胞外蛋白酶活性的电化学技术因其多重检测能力而备受关注。在此,我们采用一种基于3×3金(Au)微电极阵列(MEA)的电化学方法,该阵列用(2-氨基乙基)二茂铁(AEF)标记的特异性肽底物进行功能化,以监测组织蛋白酶B(CB)的蛋白酶活性。蛋白酶对这些肽底物的切割会导致交流伏安法(ACV)信号呈指数衰减。蛋白酶活性由衰减时间常数的倒数(1/τ)表示,根据非均相米氏模型,其等于(k/K)[CB]。然而,将AEF-肽与金电极连接的硫醇/金化学吸附易受蛋白酶激活试剂二硫苏糖醇(DTT)的干扰,导致在连续ACV测量过程中肽从金表面解吸。这会引发虚假信号衰减,掩盖蛋白酶活性并降低传感器灵敏度。为解决此问题,在使用离心过滤激活CB后去除DTT,同时加入乙二胺四乙酸(EDTA)以维持酶活性。这使得能够准确测定CB的蛋白水解动力学,并阐明EDTA和DTT在激活过程中的作用。利用MEA芯片已证明CB对三种不同肽底物的固有底物依赖性切割,展示了对多种蛋白酶进行快速活性分析的潜力。该研究强调了在广泛的氧化还原标记电化学生物传感器中理解活性生物试剂对硫醇/金界面干扰的重要性。