Suppr超能文献

基于 T1 加权对比增强成像的放射组学特征与机器学习策略鉴别胶质母细胞瘤患者标准治疗后假性进展与真性进展。

Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T-weighted Contrast-enhanced Imaging.

机构信息

Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.

Student Brigade, Air Force Medical University, Xi'an, 710032, Shaanxi, China.

出版信息

BMC Med Imaging. 2021 Feb 3;21(1):17. doi: 10.1186/s12880-020-00545-5.

Abstract

BACKGROUND

Based on conventional MRI images, it is difficult to differentiatepseudoprogression from true progressionin GBM patients after standard treatment, which isa critical issue associated with survival. The aim of this study was to evaluate the diagnostic performance of machine learning using radiomics modelfrom T-weighted contrast enhanced imaging(TCE) in differentiating pseudoprogression from true progression after standard treatment for GBM.

METHODS

Seventy-sevenGBM patients, including 51 with true progression and 26 with pseudoprogression,who underwent standard treatment and TCE, were retrospectively enrolled.Clinical information, including sex, age, KPS score, resection extent, neurological deficit and mean radiation dose, were also recorded collected for each patient. The whole tumor enhancementwas manually drawn on the TCE image, and a total of texture 9675 features were extracted and fed to a two-step feature selection scheme. A random forest (RF) classifier was trained to separate the patients by their outcomes.The diagnostic efficacies of the radiomics modeland radiologist assessment were further compared by using theaccuracy (ACC), sensitivity and specificity.

RESULTS

No clinical features showed statistically significant differences between true progression and pseudoprogression.The radiomic classifier demonstrated ACC, sensitivity, and specificity of 72.78%(95% confidence interval [CI]: 0.45,0.91), 78.36%(95%CI: 0.56,1.00) and 61.33%(95%CI: 0.20,0.82).The accuracy, sensitivity and specificity of three radiologists' assessment were66.23%(95% CI: 0.55,0.76), 61.50%(95% CI: 0.43,0.78) and 68.62%(95% CI: 0.55,0.80); 55.84%(95% CI: 0.45,0.66),69.25%(95% CI: 0.50,0.84) and 49.13%(95% CI: 0.36,0.62); 55.84%(95% CI: 0.45,0.66), 69.23%(95% CI: 0.50,0.84) and 47.06%(95% CI: 0.34,0.61), respectively.

CONCLUSION

TCE-based radiomics showed better classification performance compared with radiologists' assessment.The radiomics modelwas promising in differentiating pseudoprogression from true progression.

摘要

背景

基于常规 MRI 图像,很难区分胶质母细胞瘤(GBM)患者标准治疗后的假性进展与真性进展,这是与生存相关的关键问题。本研究旨在评估基于 T 加权对比增强成像(TCE)的放射组学模型在区分 GBM 标准治疗后假性进展与真性进展方面的诊断性能。

方法

回顾性纳入 77 例 GBM 患者,其中 51 例为真性进展,26 例为假性进展,均接受标准治疗和 TCE。还记录了每位患者的临床信息,包括性别、年龄、KPS 评分、切除程度、神经功能缺损和平均辐射剂量。手动在 TCE 图像上绘制整个肿瘤增强区,提取并输入总共 9675 个纹理特征进行两步特征选择方案。使用随机森林(RF)分类器根据患者的结局进行分类。进一步通过准确性(ACC)、敏感度和特异度比较放射组学模型和放射科医生评估的诊断效果。

结果

真性进展和假性进展患者之间无统计学意义的临床特征差异。放射组学分类器的 ACC、敏感度和特异度分别为 72.78%(95%CI:0.45,0.91)、78.36%(95%CI:0.56,1.00)和 61.33%(95%CI:0.20,0.82)。三位放射科医生评估的准确性、敏感度和特异度分别为 66.23%(95%CI:0.55,0.76)、61.50%(95%CI:0.43,0.78)和 68.62%(95%CI:0.55,0.80);55.84%(95%CI:0.45,0.66)、69.25%(95%CI:0.50,0.84)和 49.13%(95%CI:0.36,0.62);55.84%(95%CI:0.45,0.66)、69.23%(95%CI:0.50,0.84)和 47.06%(95%CI:0.34,0.61)。

结论

基于 TCE 的放射组学显示出比放射科医生评估更好的分类性能。放射组学模型在区分假性进展与真性进展方面具有应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验