Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland.
Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA.
J Exp Biol. 2021 Mar 1;224(Pt 5):jeb237073. doi: 10.1242/jeb.237073.
The capacity to recover after a perturbation is a well-known intrinsic property of physiological systems, including the locomotor system, and can be termed 'resilience' Despite an abundance of metrics proposed to measure the complex dynamics of bipedal locomotion, analytical tools for quantifying resilience are lacking. Here, we introduce a novel method to directly quantify resilience to perturbations during locomotion. We examined the extent to which synchronizing stepping with two different temporal structured auditory stimuli (periodic and 1/ structure) during walking modulates resilience to a large unexpected perturbation. Recovery time after perturbation was calculated from the horizontal velocity of the body's center of mass. Our results indicate that synchronizing stepping with a 1/ stimulus elicited greater resilience to mechanical perturbations during walking compared with the periodic stimulus (3.3 s faster). Our proposed method may help to gain a comprehensive understanding of movement recovery behavior of humans and other animals in their ecological contexts.
在受到干扰后恢复的能力是生理系统(包括运动系统)的一个众所周知的固有特性,可以称之为“弹性”。尽管已经提出了大量的指标来测量双足运动的复杂动力学,但缺乏量化弹性的分析工具。在这里,我们引入了一种新的方法,可以直接量化运动过程中对干扰的弹性。我们研究了在行走过程中,同步两种不同时间结构的听觉刺激(周期性和 1/ 结构)对步幅的影响,这两种听觉刺激会调节对大的意外干扰的弹性。通过测量身体质心的水平速度来计算干扰后的恢复时间。我们的结果表明,与周期性刺激相比(快 3.3 秒),同步 1/ 刺激的步幅对行走过程中的机械干扰具有更大的弹性。我们提出的方法可能有助于全面了解人类和其他动物在其生态环境中的运动恢复行为。