Huang Liang, Feng Yongxiang, Liang Fei, Zhao Peng, Wang Wenhui
Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China.
Biomicrofluidics. 2021 Jan 28;15(1):014106. doi: 10.1063/5.0039087. eCollection 2021 Jan.
On-chip single-cell manipulation is imperative in cell biology and it is desirable for a microfluidic chip to have multimodal manipulation capability. Here, we embedded two counter-propagating optical fibers into the microfluidic chip and configured their relative position in space to produce different misalignments. By doing so, we demonstrated multimodal manipulation of single cells, including capture, stretching, translation, orbital revolution, and spin rotation. The rotational manipulation can be in-plane or out-of-plane, providing flexibility and capability to observe the cells from different angles. Based on out-of-plane rotation, we performed a 3D reconstruction of cell morphology and extracted its five geometric parameters as biophysical features. We envision that this type of microfluidic chip configured with dual optical fibers can be helpful in manipulating cells as the upstream process of single-cell analysis.
芯片上的单细胞操作在细胞生物学中至关重要,并且期望微流控芯片具有多模态操作能力。在这里,我们将两根反向传播的光纤嵌入微流控芯片中,并在空间中配置它们的相对位置以产生不同的错位。通过这样做,我们展示了对单细胞的多模态操作,包括捕获、拉伸、平移、轨道旋转和自旋旋转。旋转操作可以是平面内或平面外的,提供了从不同角度观察细胞的灵活性和能力。基于平面外旋转,我们对细胞形态进行了三维重建,并提取了其五个几何参数作为生物物理特征。我们设想这种配置有双光纤的微流控芯片作为单细胞分析的上游过程,有助于细胞操作。