Suppr超能文献

早期炎症性关节炎的疾病活动及其预测因素:来自全国队列的研究结果。

Disease activity and its predictors in early inflammatory arthritis: findings from a national cohort.

机构信息

Centre for Rheumatic Diseases, King's College London.

Department Rheumatology, Queen Alexandra Hospital, Portsmouth, UK.

出版信息

Rheumatology (Oxford). 2021 Oct 2;60(10):4811-4820. doi: 10.1093/rheumatology/keab107.

Abstract

OBJECTIVES

We set out to characterize patient factors that predict disease activity during the first year of treatment for early inflammatory arthritis (EIA).

METHODS

We used an observational cohort study design, extracting data from a national clinical audit. All NHS organizations providing secondary rheumatology care in England and Wales were eligible to take part, with recruitment from 215/218 (99%) clinical commissioning groups (CCGs)/Health Boards. Participants were >16 years old and newly diagnosed with RA pattern EIA between May 2018 and May 2019. Demographic details collected at baseline included age, gender, ethnicity, work status and postcode, which was converted to an area level measure of socioeconomic position (SEP). Disease activity scores (DAS28) were collected at baseline, three and 12 months follow-up.

RESULTS

A total of 7455 participants were included in analyses. Significant levels of CCG/Health board variation could not be robustly identified from mixed effects modelling. Gender and SEP were predictors of low disease activity at baseline, three and 12 months follow-up. Mapping of margins identified a gradient for SEP, whereby those with higher degrees of deprivation had higher disease activity. Black, Asian and Minority Ethnic patients had lower odds of remission at three months follow-up.

CONCLUSION

Patient factors (gender, SEP, ethnicity) predict disease activity. The rheumatology community should galvanise to improve access to services for all members of society. More data are required to characterize area level variation in disease activity.

摘要

目的

我们旨在描述预测早期炎症性关节炎(EIA)患者在治疗的第一年疾病活动度的相关因素。

方法

我们采用观察性队列研究设计,从国家临床审计中提取数据。英格兰和威尔士所有提供二级风湿病护理的 NHS 组织都有资格参加,从 215/218 个(99%)临床委托组(CCG)/卫生委员会招募参与者。参与者年龄>16 岁,在 2018 年 5 月至 2019 年 5 月期间新诊断为 RA 样 EIA。基线时收集的人口统计学详细信息包括年龄、性别、种族、工作状况和邮政编码,后者被转换为社会经济地位(SEP)的区域水平测量值。基线、3 个月和 12 个月随访时收集疾病活动评分(DAS28)。

结果

共纳入 7455 名参与者进行分析。混合效应模型无法可靠地识别 CCG/卫生委员会之间的显著差异。性别和 SEP 是基线、3 个月和 12 个月随访时低疾病活动度的预测因素。边缘映射确定了 SEP 的梯度,即剥夺程度较高的人疾病活动度较高。黑人、亚洲和少数族裔患者在 3 个月随访时缓解的可能性较低。

结论

患者因素(性别、SEP、种族)预测疾病活动度。风湿病学界应齐心协力,为社会各界成员改善服务的获取。需要更多的数据来描述疾病活动度的区域水平差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f134/8487309/c6567b07fd51/keab107f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验