Suppr超能文献

基于骨髓增生异常综合征临床和基因组特征的分类及个性化预后评估

Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes.

作者信息

Bersanelli Matteo, Travaglino Erica, Meggendorfer Manja, Matteuzzi Tommaso, Sala Claudia, Mosca Ettore, Chiereghin Chiara, Di Nanni Noemi, Gnocchi Matteo, Zampini Matteo, Rossi Marianna, Maggioni Giulia, Termanini Alberto, Angelucci Emanuele, Bernardi Massimo, Borin Lorenza, Bruno Benedetto, Bonifazi Francesca, Santini Valeria, Bacigalupo Andrea, Voso Maria Teresa, Oliva Esther, Riva Marta, Ubezio Marta, Morabito Lucio, Campagna Alessia, Saitta Claudia, Savevski Victor, Giampieri Enrico, Remondini Daniel, Passamonti Francesco, Ciceri Fabio, Bolli Niccolò, Rambaldi Alessandro, Kern Wolfgang, Kordasti Shahram, Sole Francesc, Palomo Laura, Sanz Guillermo, Santoro Armando, Platzbecker Uwe, Fenaux Pierre, Milanesi Luciano, Haferlach Torsten, Castellani Gastone, Della Porta Matteo G

机构信息

Department of Physics and Astronomy, University of Bologna, Bologna, Italy.

National Institute of Nuclear Physics (INFN), Bologna, Italy.

出版信息

J Clin Oncol. 2021 Apr 10;39(11):1223-1233. doi: 10.1200/JCO.20.01659. Epub 2021 Feb 4.

Abstract

PURPOSE

Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication.

METHODS

We retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet processes, we combined mutations in 47 genes with cytogenetic abnormalities to identify genetic associations and subgroups. Random-effects Cox proportional hazards multistate modeling was used for developing prognostic models. An independent validation on 318 cases was performed.

RESULTS

We identify eight MDS groups (clusters) according to specific genomic features. In five groups, dominant genomic features include splicing gene mutations (, , and ) that occur early in disease history, determine specific phenotypes, and drive disease evolution. These groups display different prognosis (groups with mutations being associated with better survival). Specific co-mutation patterns account for clinical heterogeneity within - and -related MDS. MDS with complex karyotype and/or gene abnormalities and MDS with acute leukemia-like mutations show poorest prognosis. MDS with 5q deletion are clustered into two distinct groups according to the number of mutated genes and/or presence of mutations. By integrating 63 clinical and genomic variables, we define a novel prognostic model that generates personally tailored predictions of survival. The predicted and observed outcomes correlate well in internal cross-validation and in an independent external cohort. This model substantially improves predictive accuracy of currently available prognostic tools. We have created a Web portal that allows outcome predictions to be generated for user-defined constellations of genomic and clinical features.

CONCLUSION

Genomic landscape in MDS reveals distinct subgroups associated with specific clinical features and discrete patterns of evolution, providing a proof of concept for next-generation disease classification and prognosis.

摘要

目的

已在骨髓增生异常综合征(MDS)中鉴定出反复突变的基因和染色体异常。我们旨在将这些基因组特征整合到疾病分类和预后评估中。

方法

我们回顾性纳入了2043例患者。使用贝叶斯网络和狄利克雷过程,我们将47个基因的突变与细胞遗传学异常相结合,以识别遗传关联和亚组。采用随机效应Cox比例风险多状态模型来建立预后模型。对318例病例进行了独立验证。

结果

我们根据特定的基因组特征确定了8个MDS组(簇)。在5个组中,主要的基因组特征包括剪接基因突变(、和),这些突变发生在疾病病程早期,决定特定表型并推动疾病进展。这些组显示出不同的预后(有突变的组生存情况较好)。特定的共突变模式解释了-和-相关MDS中的临床异质性。具有复杂核型和/或基因异常的MDS以及具有急性白血病样突变的MDS预后最差。根据突变基因的数量和/或突变的存在情况,5q缺失的MDS被分为两个不同的组。通过整合63个临床和基因组变量,我们定义了一种新的预后模型,该模型可生成个性化的生存预测。在内部交叉验证和独立的外部队列中,预测结果与观察结果相关性良好。该模型显著提高了现有预后工具的预测准确性。我们创建了一个门户网站,可根据用户定义的基因组和临床特征组合生成预后预测。

结论

MDS的基因组格局揭示了与特定临床特征和离散进化模式相关的不同亚组,为下一代疾病分类和预后评估提供了概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9e/8078359/29ef82ca9967/jco-39-1223-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验