Suppr超能文献

无线传感器网络中的稳健数据恢复:一种基于学习的矩阵补全框架。

Robust Data Recovery in Wireless Sensor Network: A Learning-Based Matrix Completion Framework.

作者信息

Kortas Manel, Habachi Oussama, Bouallegue Ammar, Meghdadi Vahid, Ezzedine Tahar, Cances Jean-Pierre

机构信息

The XLIM Research Institute, University of Limoges, 87000 Limoges, France.

SysCom Laboratory in the National Engineering School of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia.

出版信息

Sensors (Basel). 2021 Feb 2;21(3):1016. doi: 10.3390/s21031016.

Abstract

In this paper, we are interested in the data gathering for Wireless Sensor Networks (WSNs). In this context, we assume that only some nodes are active in the network, and that these nodes are not transmitting all the time. On the other side, the inactive nodes are considered to be inexistent or idle for a long time period. Henceforth, the sink should be able to recover the entire data matrix whie using the few received measurements. To this end, we propose a novel technique that is based on the Matrix Completion (MC) methodology. Indeed, the considered compression pattern, which is composed of structured and random losses, cannot be solved by existing MC techniques. When the received reading matrix contains several missing rows, corresponding to the inactive nodes, MC techniques are unable to recover the missing data. Thus, we propose a clustering technique that takes the inter-nodes correlation into account, and we present a complementary minimization problem based-interpolation technique that guarantees the recovery of the inactive nodes' readings. The proposed reconstruction pattern, combined with the sampling one, is evaluated under extensive simulations. The results confirm the validity of each building block and the efficiency of the whole structured approach, and prove that it outperforms the closest scheme.

摘要

在本文中,我们关注无线传感器网络(WSN)的数据收集问题。在此背景下,我们假设网络中只有一些节点处于活跃状态,并且这些节点并非一直在传输数据。另一方面,不活跃节点在很长一段时间内被视为不存在或处于空闲状态。因此,汇聚节点应该能够在使用少量接收到的测量值的情况下恢复整个数据矩阵。为此,我们提出了一种基于矩阵补全(MC)方法的新颖技术。实际上,由结构化和随机丢失组成的所考虑的压缩模式无法用现有的MC技术解决。当接收到的读数矩阵包含对应于不活跃节点的若干缺失行时,MC技术无法恢复缺失数据。因此,我们提出了一种考虑节点间相关性的聚类技术,并提出了一种基于互补最小化问题的插值技术,该技术可确保恢复不活跃节点的读数。所提出的重建模式与采样模式相结合,在大量模拟下进行了评估。结果证实了每个构建模块的有效性以及整个结构化方法的效率,并证明它优于最接近的方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/7867355/acedd7fce2a3/sensors-21-01016-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验