Department of Chemistry, Biochemistry, and Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany.
Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.
Sci Rep. 2021 Feb 4;11(1):3056. doi: 10.1038/s41598-021-82660-z.
Hydroxybenzoic acids, like gallic acid and protocatechuic acid, are highly abundant natural compounds. In biotechnology, they serve as critical precursors for various molecules in heterologous production pathways, but a major bottleneck is these acids' non-oxidative decarboxylation to hydroxybenzenes. Optimizing this step by pathway and enzyme engineering is tedious, partly because of the complicating cofactor dependencies of the commonly used prFMN-dependent decarboxylases. Here, we report the crystal structures (1.5-1.9 Å) of two homologous fungal decarboxylases, AGDC1 from Arxula adenivorans, and PPP2 from Madurella mycetomatis. Remarkably, both decarboxylases are cofactor independent and are superior to prFMN-dependent decarboxylases when heterologously expressed in Saccharomyces cerevisiae. The organization of their active site, together with mutational studies, suggests a novel decarboxylation mechanism that combines acid-base catalysis and transition state stabilization. Both enzymes are trimers, with a central potassium binding site. In each monomer, potassium introduces a local twist in a β-sheet close to the active site, which primes the critical H86-D40 dyad for catalysis. A conserved pair of tryptophans, W35 and W61, acts like a clamp that destabilizes the substrate by twisting its carboxyl group relative to the phenol moiety. These findings reveal AGDC1 and PPP2 as founding members of a so far overlooked group of cofactor independent decarboxylases and suggest strategies to engineer their unique chemistry for a wide variety of biotechnological applications.
羟基苯甲酸,如没食子酸和原儿茶酸,是高度丰富的天然化合物。在生物技术中,它们是异源生产途径中各种分子的关键前体,但主要瓶颈是这些酸的非氧化脱羧化为羟基苯。通过途径和酶工程优化这一步非常繁琐,部分原因是常用的依赖 FMN 的脱羧酶的复杂辅因子依赖性。在这里,我们报告了两种同源真菌脱羧酶的晶体结构(1.5-1.9Å),即来自 Arxula adenivorans 的 AGDC1 和来自 Madurella mycetomatis 的 PPP2。值得注意的是,这两种脱羧酶都是辅因子独立的,并且在异源表达于酿酒酵母中时优于依赖 FMN 的脱羧酶。它们活性位点的组织,以及突变研究,表明了一种新的脱羧机制,它结合了酸碱催化和过渡态稳定。这两种酶都是三聚体,具有中央钾结合位点。在每个单体中,钾在靠近活性位点的β-折叠附近引入局部扭曲,为关键的 H86-D40 偶联物的催化做好准备。一对保守的色氨酸 W35 和 W61 像一个夹子一样起作用,通过相对酚部分扭曲其羧基来使底物不稳定。这些发现揭示了 AGDC1 和 PPP2 是迄今为止被忽视的辅因子独立脱羧酶的一个新成员,并提出了利用其独特化学性质的策略,以满足各种生物技术应用的需求。