Pawar Sahebrao B, Deshmukh N K, Jadhav Sharad B
School of Computational Sciences, Swami Ramanand Teerth, Marathvada University, Nanded, India.
Biomed Eng Lett. 2024 Apr 10;14(4):631-647. doi: 10.1007/s13534-024-00355-6. eCollection 2024 Jul.
This study addresses detecting COX-2 inhibition in breast cancer, targeting its role in tumor growth. The primary goal is to develop an efficient technique for precise COX-2 inhibition bioactivity detection, with implications for identifying anti-cancer compounds and advancing breast cancer therapies. The proposed methodology uses the UNet architecture for feature extraction, enhancing accuracy. A modified chicken swarm optimization (MCSO) algorithm addresses data dimensionality, optimizing features. An improved Laguerre neural network (ILNN) classifies COX-2 inhibition bioactivity. Validation is performed using the ChEMBL database. The research evaluates the accuracy, precision, recall, F-measure, Matthews' correlation coefficient (MCC), and Dice coefficient of the proposed method. These metrics are compared against those of contemporary methods to assess the efficiency and effectiveness of the developed technique. The study underscores the hybrid deep learning method's significance in accurately detecting COX-2 inhibition bioactivity against breast cancer. Results highlight its potential as a valuable tool in breast cancer drug discovery.
本研究旨在检测乳腺癌中COX-2的抑制作用,针对其在肿瘤生长中的作用。主要目标是开发一种高效技术,用于精确检测COX-2抑制生物活性,这对于识别抗癌化合物和推进乳腺癌治疗具有重要意义。所提出的方法使用UNet架构进行特征提取,提高准确性。一种改进的鸡群优化(MCSO)算法解决数据维度问题,优化特征。一种改进的拉盖尔神经网络(ILNN)对COX-2抑制生物活性进行分类。使用ChEMBL数据库进行验证。该研究评估了所提出方法的准确性、精确性、召回率、F值、马修斯相关系数(MCC)和骰子系数。将这些指标与当代方法的指标进行比较,以评估所开发技术的效率和有效性。该研究强调了混合深度学习方法在准确检测针对乳腺癌的COX-2抑制生物活性方面的重要性。结果突出了其作为乳腺癌药物发现中有价值工具的潜力。