Suppr超能文献

用于检测针对乳腺癌疾病的COX-2抑制生物活性的混合深度学习技术

Hybrid deep learning technique for COX-2 inhibition bioactivity detection against breast cancer disease.

作者信息

Pawar Sahebrao B, Deshmukh N K, Jadhav Sharad B

机构信息

School of Computational Sciences, Swami Ramanand Teerth, Marathvada University, Nanded, India.

出版信息

Biomed Eng Lett. 2024 Apr 10;14(4):631-647. doi: 10.1007/s13534-024-00355-6. eCollection 2024 Jul.

Abstract

This study addresses detecting COX-2 inhibition in breast cancer, targeting its role in tumor growth. The primary goal is to develop an efficient technique for precise COX-2 inhibition bioactivity detection, with implications for identifying anti-cancer compounds and advancing breast cancer therapies. The proposed methodology uses the UNet architecture for feature extraction, enhancing accuracy. A modified chicken swarm optimization (MCSO) algorithm addresses data dimensionality, optimizing features. An improved Laguerre neural network (ILNN) classifies COX-2 inhibition bioactivity. Validation is performed using the ChEMBL database. The research evaluates the accuracy, precision, recall, F-measure, Matthews' correlation coefficient (MCC), and Dice coefficient of the proposed method. These metrics are compared against those of contemporary methods to assess the efficiency and effectiveness of the developed technique. The study underscores the hybrid deep learning method's significance in accurately detecting COX-2 inhibition bioactivity against breast cancer. Results highlight its potential as a valuable tool in breast cancer drug discovery.

摘要

本研究旨在检测乳腺癌中COX-2的抑制作用,针对其在肿瘤生长中的作用。主要目标是开发一种高效技术,用于精确检测COX-2抑制生物活性,这对于识别抗癌化合物和推进乳腺癌治疗具有重要意义。所提出的方法使用UNet架构进行特征提取,提高准确性。一种改进的鸡群优化(MCSO)算法解决数据维度问题,优化特征。一种改进的拉盖尔神经网络(ILNN)对COX-2抑制生物活性进行分类。使用ChEMBL数据库进行验证。该研究评估了所提出方法的准确性、精确性、召回率、F值、马修斯相关系数(MCC)和骰子系数。将这些指标与当代方法的指标进行比较,以评估所开发技术的效率和有效性。该研究强调了混合深度学习方法在准确检测针对乳腺癌的COX-2抑制生物活性方面的重要性。结果突出了其作为乳腺癌药物发现中有价值工具的潜力。

相似文献

1
Hybrid deep learning technique for COX-2 inhibition bioactivity detection against breast cancer disease.
Biomed Eng Lett. 2024 Apr 10;14(4):631-647. doi: 10.1007/s13534-024-00355-6. eCollection 2024 Jul.
2
Dual-hybrid intrusion detection system to detect False Data Injection in smart grids.
PLoS One. 2025 Jan 27;20(1):e0316536. doi: 10.1371/journal.pone.0316536. eCollection 2025.
3
CICADA (UCX): A novel approach for automated breast cancer classification through aggressiveness delineation.
Comput Biol Chem. 2025 Apr;115:108368. doi: 10.1016/j.compbiolchem.2025.108368. Epub 2025 Jan 31.
4
Binding Activity Classification of Anti-SARS-CoV-2 Molecules using Deep Learning Across Multiple Assays.
Balkan Med J. 2024 May 3;41(3):186-192. doi: 10.4274/balkanmedj.galenos.2024.2024-1-73. Epub 2024 Mar 11.
5
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
10
An adaptive convolution neural network model for tuberculosis detection and diagnosis using semantic segmentation.
Pol J Radiol. 2025 Mar 14;90:e124-e137. doi: 10.5114/pjr/200628. eCollection 2025.

本文引用的文献

1
A machine learning-based approach to ERα bioactivity and drug ADMET prediction.
Front Genet. 2023 Jan 4;13:1087273. doi: 10.3389/fgene.2022.1087273. eCollection 2022.
2
Convolutional Neural Network Model Based on 2D Fingerprint for Bioactivity Prediction.
Int J Mol Sci. 2022 Oct 30;23(21):13230. doi: 10.3390/ijms232113230.
3
Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs.
PLoS Comput Biol. 2022 Apr 25;18(4):e1010029. doi: 10.1371/journal.pcbi.1010029. eCollection 2022 Apr.
4
Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
Mol Divers. 2021 Aug;25(3):1315-1360. doi: 10.1007/s11030-021-10217-3. Epub 2021 Apr 12.
5
Generative chemistry: drug discovery with deep learning generative models.
J Mol Model. 2021 Feb 4;27(3):71. doi: 10.1007/s00894-021-04674-8.
7
A multiple classifier system identifies novel cannabinoid CB2 receptor ligands.
J Cheminform. 2019 Nov 7;11(1):66. doi: 10.1186/s13321-019-0389-9.
8
Advanced machine-learning techniques in drug discovery.
Drug Discov Today. 2021 Mar;26(3):769-777. doi: 10.1016/j.drudis.2020.12.003. Epub 2020 Dec 5.
9
Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition.
Methods. 2020 Aug 1;180:89-110. doi: 10.1016/j.ymeth.2020.06.016. Epub 2020 Jul 6.
10
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening.
IEEE Trans Med Imaging. 2020 Apr;39(4):1184-1194. doi: 10.1109/TMI.2019.2945514. Epub 2019 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验