Suppr超能文献

血压与静息态功能磁共振成像同步低频振荡所证明的脑自动调节

Cerebral Autoregulation Evidenced by Synchronized Low Frequency Oscillations in Blood Pressure and Resting-State fMRI.

作者信息

Whittaker Joseph R, Driver Ian D, Venzi Marcello, Bright Molly G, Murphy Kevin

机构信息

Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom.

CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom.

出版信息

Front Neurosci. 2019 May 7;13:433. doi: 10.3389/fnins.2019.00433. eCollection 2019.

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) is a widely used technique for mapping the brain's functional architecture, so delineating the main sources of variance comprising the signal is crucial. Low frequency oscillations (LFO) that are not of neural origin, but which are driven by mechanisms related to cerebral autoregulation (CA), are present in the blood-oxygenation-level-dependent (BOLD) signal within the rs-fMRI frequency band. In this study we use a MR compatible device (Caretaker, Biopac) to obtain a non-invasive estimate of beat-to-beat mean arterial pressure (MAP) fluctuations concurrently with rs-fMRI at 3T. Healthy adult subjects ( = 9; 5 male) completed two 20-min rs-fMRI scans. MAP fluctuations were decomposed into different frequency scales using a discrete wavelet transform, and oscillations at approximately 0.1 Hz show a high degree of spatially structured correlations with matched frequency fMRI fluctuations. On average across subjects, MAP fluctuations at this scale of the wavelet decomposition explain ∼2.2% of matched frequency fMRI signal variance. Additionally, a simultaneous multi-slice multi-echo acquisition was used to collect 10-min rs-fMRI at three echo times at 7T in a separate group of healthy adults ( = 5; 5 male). Multiple echo times were used to estimate the R decay at every time point, and MAP was shown to strongly correlate with this signal, which suggests a purely BOLD (i.e., blood flow related) origin. This study demonstrates that there is a significant component of the BOLD signal that has a systemic physiological origin, and highlights the fact that not all localized BOLD signal changes necessarily reflect blood flow supporting local neural activity. Instead, these data show that a proportion of BOLD signal fluctuations in rs-fMRI are due to localized control of blood flow that is independent of local neural activity, most likely reflecting more general systemic autoregulatory processes. Thus, fMRI is a promising tool for studying flow changes associated with cerebral autoregulation with high spatial resolution.

摘要

静息态功能磁共振成像(rs-fMRI)是一种广泛用于描绘大脑功能结构的技术,因此明确构成该信号的主要方差来源至关重要。在rs-fMRI频段内的血氧水平依赖(BOLD)信号中存在低频振荡(LFO),其并非源于神经,而是由与脑自动调节(CA)相关的机制驱动。在本研究中,我们使用一种与磁共振兼容的设备(Caretaker,Biopac)在3T磁场下与rs-fMRI同步获取逐搏平均动脉压(MAP)波动的无创估计值。健康成年受试者(n = 9;5名男性)完成了两次20分钟的rs-fMRI扫描。使用离散小波变换将MAP波动分解为不同频率尺度,约0.1Hz的振荡与匹配频率的功能磁共振成像波动呈现高度的空间结构相关性。在受试者中平均而言,小波分解该尺度下的MAP波动解释了约2.2%的匹配频率功能磁共振成像信号方差。此外,在另一组健康成年人(n = 5;5名男性)中,使用同时多层多回波采集在7T磁场下的三个回波时间收集10分钟的rs-fMRI数据。利用多个回波时间估计每个时间点的R2*衰减,结果显示MAP与该信号高度相关,这表明其起源纯粹是BOLD(即与血流相关)。本研究表明,BOLD信号中有一个重要成分具有全身生理起源,并强调了并非所有局部BOLD信号变化都必然反映支持局部神经活动的血流这一事实。相反,这些数据表明,rs-fMRI中一部分BOLD信号波动是由于独立于局部神经活动的局部血流控制,很可能反映了更普遍的全身自动调节过程。因此,功能磁共振成像对于以高空间分辨率研究与脑自动调节相关的血流变化是一种很有前景的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验