Suppr超能文献

用于航空结构健康监测问题的分类和回归任务的监督学习策略。

Supervised learning strategy for classification and regression tasks applied to aeronautical structural health monitoring problems.

机构信息

CEA LIST, Centre de Saclay, 91191 Gif-sur-Yvette, France.

CEA LIST, Centre de Saclay, 91191 Gif-sur-Yvette, France.

出版信息

Ultrasonics. 2021 May;113:106372. doi: 10.1016/j.ultras.2021.106372. Epub 2021 Jan 29.

Abstract

This paper presents the use of a kernel-based machine learning strategy targeting classification and regression tasks in view of automatic flaw(s) detection, localization and characterization. The studied use-case is a structural health monitoring configuration with an array of piezoelectric sensors integrated on aluminium panels affected by flaws of various positions and dimensions. The measured guided wave signals are post processed with a guided wave imaging algorithm in order to obtain an image representing the health of each specimen. These images are then used as inputs to build classification and regression models. In this paper, an extensive numerical validation campaign is conducted to validate the process. Then the inversion is applied to an experimental campaign, which demonstrate the ability to use a numerically-built model to invert experimental data.

摘要

本文提出了一种基于核的机器学习策略,用于针对自动缺陷检测、定位和特征化的分类和回归任务。所研究的用例是一种结构健康监测配置,其中在受各种位置和尺寸缺陷影响的铝板上集成了压电传感器阵列。所测量的导波信号经过导波成像算法进行后处理,以获得代表每个样本健康状况的图像。然后,这些图像被用作构建分类和回归模型的输入。在本文中,进行了广泛的数值验证活动来验证该过程。然后,将反演应用于实验活动,证明了使用数值构建的模型来反演实验数据的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验