CEA LIST, Centre de Saclay, 91191 Gif-sur-Yvette, France.
CEA LIST, Centre de Saclay, 91191 Gif-sur-Yvette, France.
Ultrasonics. 2021 May;113:106372. doi: 10.1016/j.ultras.2021.106372. Epub 2021 Jan 29.
This paper presents the use of a kernel-based machine learning strategy targeting classification and regression tasks in view of automatic flaw(s) detection, localization and characterization. The studied use-case is a structural health monitoring configuration with an array of piezoelectric sensors integrated on aluminium panels affected by flaws of various positions and dimensions. The measured guided wave signals are post processed with a guided wave imaging algorithm in order to obtain an image representing the health of each specimen. These images are then used as inputs to build classification and regression models. In this paper, an extensive numerical validation campaign is conducted to validate the process. Then the inversion is applied to an experimental campaign, which demonstrate the ability to use a numerically-built model to invert experimental data.
本文提出了一种基于核的机器学习策略,用于针对自动缺陷检测、定位和特征化的分类和回归任务。所研究的用例是一种结构健康监测配置,其中在受各种位置和尺寸缺陷影响的铝板上集成了压电传感器阵列。所测量的导波信号经过导波成像算法进行后处理,以获得代表每个样本健康状况的图像。然后,这些图像被用作构建分类和回归模型的输入。在本文中,进行了广泛的数值验证活动来验证该过程。然后,将反演应用于实验活动,证明了使用数值构建的模型来反演实验数据的能力。