Suppr超能文献

基于生物信息学分析预测和分析胶质母细胞瘤与低级别胶质瘤之间的枢纽基因。

Prediction and analysis of hub genes between glioblastoma and low-grade glioma using bioinformatics analysis.

机构信息

Department of Neurosurgery, Xintai people's Hospital Affiliated to Shandong First Medical University, PR China.

出版信息

Medicine (Baltimore). 2021 Jan 22;100(3):e23513. doi: 10.1097/MD.0000000000023513.

Abstract

Gliomas are an intractable tumor in the central nervous system. The present study aimed to identify the differentially expressed genes (DEGs) between glioblastoma multiforme (GBM) and low-grade gliomas (LGG) in order to investigate the mechanisms of different grades of gliomas. The Cancer Genome Atlas (TCGA) database was used to identify DEGs between GBM and LGG, and 2641 genes have been found differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to determine the related functions and pathways of DEGs. Protein-protein interaction (PPI) network extracted a total of 444 nodes and 1953 interactions, and identified the top 6 hub genes in gliomas. The microarray data of the datasets GSE52009 and GSE4412, which were obtained from Gene Expression Omnibus (GEO) database, were used to externally validate DEGs expression levels. Gene Expression Profiling Interactive Analysis (GEPIA) database which was based on TCGA was used to explore the survival of hub genes in LGG and GBM. Additionally, the Oncomine database and Chinese Glioma Genome Atlas (CGGA) database were used to validate the mRNA expression level and prognostic value of hub genes. Gene Set Enrichment Analysis (GSEA) identified further hub genes-related pathways. In summary, through biological information and survival analysis, 6 hub genes may be new biomarkers for diagnosis and for guiding the choice of treatment strategies for different grades of gliomas.

摘要

神经胶质瘤是中枢神经系统中一种难以治疗的肿瘤。本研究旨在鉴定胶质母细胞瘤(GBM)和低级别神经胶质瘤(LGG)之间的差异表达基因(DEGs),以研究不同级别神经胶质瘤的机制。使用癌症基因组图谱(TCGA)数据库鉴定 GBM 和 LGG 之间的 DEGs,发现了 2641 个差异表达基因。通过基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析,确定了 DEGs 的相关功能和途径。蛋白质-蛋白质相互作用(PPI)网络共提取了 444 个节点和 1953 个相互作用,鉴定出神经胶质瘤中的 6 个关键基因。从基因表达综合数据库(GEO)数据库中获取的数据集 GSE52009 和 GSE4412 的微阵列数据,用于外部验证 DEGs 的表达水平。基于 TCGA 的基因表达谱交互式分析(GEPIA)数据库用于探讨 LGG 和 GBM 中关键基因的生存情况。此外,Oncomine 数据库和中国脑胶质瘤基因组图谱(CGGA)数据库用于验证关键基因的 mRNA 表达水平和预后价值。基因集富集分析(GSEA)进一步确定了关键基因相关途径。总之,通过生物信息学和生存分析,6 个关键基因可能是不同级别神经胶质瘤诊断和指导治疗策略选择的新生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d50/7837950/fab7b4de4f63/medi-100-e23513-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验