Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Sci Rep. 2021 Feb 5;11(1):3254. doi: 10.1038/s41598-020-74399-w.
Most current Alzheimer's disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer's disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature.
目前大多数阿尔茨海默病(AD)和轻度认知障碍(MCI)研究都使用单一数据模态来进行预测,如 AD 阶段。多模态数据的融合可以提供 AD 分期分析的整体视图。因此,我们使用深度学习(DL)来综合分析影像学(磁共振成像(MRI))、遗传学(单核苷酸多态性(SNP))和临床测试数据,将患者分为 AD、MCI 和对照(CN)。我们使用堆叠去噪自编码器从临床和遗传数据中提取特征,并使用 3D 卷积神经网络(CNN)进行影像学数据处理。我们还开发了一种新的数据解释方法,通过聚类和扰动分析来识别深度学习模型中表现最佳的特征。我们使用阿尔茨海默病神经影像学倡议(ADNI)数据集证明,深度学习模型的表现优于浅层模型,包括支持向量机、决策树、随机森林和 k 近邻。此外,我们还证明,在准确性、精度、召回率和平均 F1 评分方面,多模态数据的集成优于单模态模型。我们的模型还确定了海马体、杏仁核等脑区以及 Rey 听觉言语学习测试(RAVLT)是区分度最高的特征,这与已知的 AD 文献一致。