Suppr超能文献

用于从土壤中自动提取线虫孢囊和卵的机器人农业仪器,以改善病虫害综合治理。

Robotic agricultural instrument for automated extraction of nematode cysts and eggs from soil to improve integrated pest management.

机构信息

Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA.

Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.

出版信息

Sci Rep. 2021 Feb 5;11(1):3212. doi: 10.1038/s41598-021-82261-w.

Abstract

Soybeans are an important crop for global food security. Every year, soybean yields are reduced by numerous soybean diseases, particularly the soybean cyst nematode (SCN). It is difficult to visually identify the presence of SCN in the field, let alone its population densities or numbers, as there are no obvious aboveground disease symptoms. The only definitive way to assess SCN population densities is to directly extract the SCN cysts from soil and then extract the eggs from cysts and count them. Extraction is typically conducted in commercial soil analysis laboratories and university plant diagnostic clinics and involves repeated steps of sieving, washing, collecting, grinding, and cleaning. Here we present a robotic instrument to reproduce and automate the functions of the conventional methods to extract nematode cysts from soil and subsequently extract eggs from the recovered nematode cysts. We incorporated mechanisms to actuate the stage system, manipulate positions of individual sieves using the gripper, recover cysts and cyst-sized objects from soil suspended in water, and grind the cysts to release their eggs. All system functions are controlled and operated by a touchscreen interface software. The performance of the robotic instrument is evaluated using soil samples infested with SCN from two farms at different locations and results were comparable to the conventional technique. Our new technology brings the benefits of automation to SCN soil diagnostics, a step towards long-term integrated pest management of this serious soybean pest.

摘要

大豆是全球粮食安全的重要作物。每年,许多大豆疾病都会降低大豆的产量,尤其是大豆胞囊线虫(SCN)。在田间很难通过肉眼来识别 SCN 的存在,更不用说其种群密度或数量了,因为没有明显的地上病害症状。评估 SCN 种群密度的唯一明确方法是直接从土壤中提取 SCN 胞囊,然后从胞囊中提取卵并进行计数。提取通常在商业土壤分析实验室和大学植物诊断诊所进行,涉及重复的筛网、洗涤、收集、研磨和清洗步骤。在这里,我们展示了一种机器人仪器,用于复制和自动化传统方法从土壤中提取线虫胞囊并随后从回收的线虫胞囊中提取卵的功能。我们引入了一些机制来驱动台系统,使用夹具操纵各个筛网的位置,从悬浮在水中的土壤中回收胞囊和胞囊大小的物体,并研磨胞囊以释放它们的卵。所有系统功能都由触摸屏界面软件控制和操作。该机器人仪器的性能使用来自两个不同地点的农场的受 SCN 感染的土壤样本进行评估,结果与传统技术相当。我们的新技术为 SCN 土壤诊断带来了自动化的好处,这是实现这种严重大豆害虫长期综合虫害管理的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3459/7864952/25904bb8b730/41598_2021_82261_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验