Suppr超能文献

大豆胞囊线虫的检测与治理:综述

Soybean cyst nematode detection and management: a review.

作者信息

Arjoune Youness, Sugunaraj Niroop, Peri Sai, Nair Sreejith V, Skurdal Anton, Ranganathan Prakash, Johnson Burton

机构信息

School of Electrical Engineering and Computer Science (SEECS), University of North Dakota, Grand Forks, USA.

Department of Aviation, University of North Dakota, Grand Forks, USA.

出版信息

Plant Methods. 2022 Sep 7;18(1):110. doi: 10.1186/s13007-022-00933-8.

Abstract

Soybeans play a key role in global food security. U.S. soybean yields, which comprise [Formula: see text] of the total soybeans planted in the world, continue to experience unprecedented grain loss due to the soybean cyst nematode (SCN) plant pathogen. SCN remains one of the primary disruptive pests despite the existence of advanced management techniques such as crop rotation and SCN-resistant varieties. SCN detection is a key step in managing this disease; however, early detection is challenging because soybeans do not show any above ground symptoms unless they  are significantly damaged. Direct soil sampling remains the most common method for SCN detection, however, this method has several problems. For example, the threshold damage methods-adopted by most of the laboratories to make recommendations-is not reliable as it does not consider soil pH, N, P, and K values and relies solely on the egg count instead of assessment of the root infection. To overcome the challenges of manual soil sampling methods, deep learning and hyperspectral imaging are important current topics in precision agriculture for plant disease detection and have been proposed as cost-effective and efficient detection methods that can work at scale. We have reviewed more than 150 research papers focusing on soybean cyst nematodes with an emphasis on deep learning techniques for detection and management. First: we describe soybean vegetation and reproduction stages, SCN life cycles, and factors influencing this disease. Second: we highlight the impact of SCN on soybean yield loss and the challenges associated with its detection. Third: we describe direct sampling methods in which the soil samples are procured and analyzed to evaluate SCN egg counts. Fourth: we highlight the advantages and limitations of these direct methods, then review computer vision- and remote sensing-based detection methods: data collection using ground, aerial, and satellite approaches followed by a review of machine learning methods for image analysis-based soybean cyst nematode detection. We highlight the evaluation approaches and the advantages of overall detection workflow in high-performance and big data environments. Lastly, we discuss various management approaches, such as crop rotation, fertilization, SCN resistant varieties such as PI 88788, and SCN's increasing resistance to these strategies. We review machine learning approaches for soybean crop yield forecasting as well as the influence of pesticides, herbicides, and fertilizers on SCN infestation reduction. We provide recommendations for soybean research using deep learning and hyperspectral imaging to accommodate the lack of the ground truth data and training and testing methodologies, such as data augmentation and transfer learning, to achieve a high level of detection accuracy while keeping costs as low as possible.

摘要

大豆在全球粮食安全中发挥着关键作用。美国的大豆产量占全球大豆种植总量的[公式:见正文],但由于大豆胞囊线虫(SCN)这种植物病原体,其粮食损失仍在经历前所未有的情况。尽管存在作物轮作和抗SCN品种等先进管理技术,SCN仍然是主要的破坏性害虫之一。SCN检测是控制这种病害的关键步骤;然而,早期检测具有挑战性,因为除非大豆受到严重损害,否则它们不会表现出任何地上症状。直接土壤采样仍然是检测SCN最常用的方法,然而,这种方法存在几个问题。例如,大多数实验室采用的用于提出建议的阈值损害方法不可靠,因为它没有考虑土壤pH值、氮、磷和钾的值,仅依赖于卵计数而不是对根部感染的评估。为了克服人工土壤采样方法的挑战,深度学习和高光谱成像在精准农业中是当前用于植物病害检测的重要课题,并已被提议作为具有成本效益且高效的检测方法,可大规模应用。我们回顾了150多篇专注于大豆胞囊线虫的研究论文,重点是用于检测和管理的深度学习技术。第一:我们描述大豆的植被和繁殖阶段、SCN的生命周期以及影响这种病害的因素。第二:我们强调SCN对大豆产量损失的影响以及与其检测相关的挑战。第三:我们描述直接采样方法,即采集和分析土壤样本以评估SCN卵计数。第四:我们强调这些直接方法的优点和局限性,然后回顾基于计算机视觉和遥感的检测方法:使用地面、航空和卫星方法进行数据收集,随后回顾基于图像分析的用于大豆胞囊线虫检测的机器学习方法。我们强调在高性能和大数据环境中的评估方法以及整体检测工作流程的优点。最后,我们讨论各种管理方法,如作物轮作、施肥、PI 88788等抗SCN品种以及SCN对这些策略不断增加的抗性。我们回顾用于大豆作物产量预测的机器学习方法以及农药、除草剂和肥料对减少SCN侵染的影响。我们针对利用深度学习和高光谱成像进行大豆研究提供建议,以应对缺乏地面真值数据以及训练和测试方法(如数据增强和迁移学习)的问题,从而在尽可能降低成本的同时实现高水平的检测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d8d/9450454/fb175a95d4cf/13007_2022_933_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验