Corrado Philip A, Medero Rafael, Johnson Kevin M, François Christopher J, Roldán-Alzate Alejandro, Wieben Oliver
Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Magn Reson Med. 2021 Jul;86(1):363-371. doi: 10.1002/mrm.28698. Epub 2021 Feb 5.
Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual-velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase-contrast vastly undersampled isotropic projection, PC-VIPR) versus stack of stars (phase-contrast stack of stars, PC-SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard.
The study contained three steps: (1) Construction of an MRI- and PIV-compatible LV model from a healthy adult's CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual-Venc 4D flow MRI using PC-VIPR and PC-SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root-mean-square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS).
RMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC-SOS images than PC-VIPR images in 30-min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5-min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat-to-beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel-wise in 30-min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS.
PIV is feasible for application-specific 4D flow MRI protocol optimization. PC-VIPR is better-suited to dual-Venc LV imaging with short scan times.
径向采样是加速4D流MRI采集的一种方法,使得对左心室(LV)慢血流进行双速度编码(Venc)评估成为可能。在此,针对该应用在体外比较了两种径向轨迹:3D径向(相位对比极大欠采样各向同性投影,PC-VIPR)与星状堆叠(相位对比星状堆叠,PC-SOS),并将台式粒子图像测速技术(PIV)作为参考标准。
该研究包含三个步骤:(1)根据健康成年人的CT图像构建与MRI和PIV兼容的LV模型。(2)使用脉动流泵进行体外PIV。(3)使用PC-VIPR和PC-SOS进行体外双Venc 4D流MRI(两次重复实验)。每个MR图像集均进行回顾性欠采样至五个有效扫描持续时间,并与PIV参考进行比较。比较了MRI和PIV图像之间的均方根速度矢量差(RMSE),以及动能(KE)和壁面剪应力(WSS)。
两种MR采集的RMSE均随扫描时间缩短而增加。在30分钟扫描中,PC-SOS图像的RMSE比PC-VIPR图像低3%(3.8对3.9 cm/s),但在2.5分钟扫描中高98%(9.5对4.8 cm/s)。PIV在会话内的重复性显示RMSE为4.4 cm/s,反映了逐搏血流变化,而MRI在VIPR/SOS的会话间RMSE分别为3.8/3.5 cm/s。相对于PIV,在30分钟MRI扫描中,VIPR/SOS的速度、KE和WSS在体素水平上分别高估了0.4/0.3 cm/s、0.2/0.1 μJ/mL和36/43 mPa。
PIV对于特定应用的4D流MRI协议优化是可行的。PC-VIPR更适合于短扫描时间的双Venc LV成像。