Lu Wen, Yang Ying, Zhang Tianyu, Ma Luankexin, Luo Xiting, Huang Chuanqi, Ning Jiqiang, Zhong Yijun, Hu Yong
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
School of Biological and Medical Engineering, School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
J Colloid Interface Sci. 2021 May 15;590:226-237. doi: 10.1016/j.jcis.2021.01.050. Epub 2021 Jan 21.
Dopant engineering in nanostructured materials is an effective strategy to enhance electrochemical performances via regulating the electronic structures and achieving more active sites. In this work, a robust electrode based on Fe and Mn co-doped CoS (FM-CoS) ultrathin nanosheet arrays (NSAs) on the Ni foam substrate is prepared through a facile hydrothermal method followed by a subsequent sulfurization reaction. It has been found that the incorporation of Fe ions is beneficial to higher specific capacity of the final electrode and Mn ions contribute to the excellent rate capability in the reversible redox processes. Density functional theory (DFT) calculations further verify that the Mn doping in the CoS obviously shorten the energy gap of CoS, which favors the electrochemical performances. Due to the synergetic effects of different transition metal ions, the as-prepared FM-CoS ultrathin NSAs exhibit a high specific capacity of 390 mAh g at 5 A g, as well as superior rate capability and excellent cycling stability. Moreover, the corresponding quasi-solid-state hybrid supercapacitors constructed with the FM-CoS ultrathin NSAs and active carbon exhibit a high energy density of 55 Wh kg at the power density of 752 W kg. These findings demonstrate a new platform for developing high-performance electrodes for energy storage applications.
在纳米结构材料中进行掺杂工程是一种通过调节电子结构和获得更多活性位点来提高电化学性能的有效策略。在这项工作中,通过简便的水热法随后进行硫化反应,在泡沫镍基底上制备了一种基于铁和锰共掺杂硫化钴(FM-CoS)超薄纳米片阵列(NSAs)的坚固电极。研究发现,铁离子的掺入有利于最终电极具有更高的比容量,而锰离子有助于在可逆氧化还原过程中具有优异的倍率性能。密度泛函理论(DFT)计算进一步证实,硫化钴中的锰掺杂明显缩短了硫化钴的能隙,这有利于电化学性能。由于不同过渡金属离子的协同作用,所制备的FM-CoS超薄NSAs在5 A g时表现出390 mAh g的高比容量,以及优异的倍率性能和出色的循环稳定性。此外,用FM-CoS超薄NSAs和活性炭构建的相应准固态混合超级电容器在功率密度为752 W kg时表现出55 Wh kg的高能量密度。这些发现为开发用于储能应用的高性能电极提供了一个新平台。