Suppr超能文献

机器学习:用于超级电容器的镍钴硫化物/石墨烯复合材料分析的预测工具

Machine Learning a Predictive Tool for the Analysis of NiCoS/Graphene Composites for Supercapacitor.

作者信息

Mulla Heena S, Sawant Digambar S, Gaikwad Sandesh V, Fulari Akash V, Nimat Rajesh K, Dubal Deepak P, Lohar Gaurav M

机构信息

Department of Physics, Lal Bahadur Shastri College of Arts, Science and Commerce, Satara, 415002, Maharashtra, India.

Department of Physics, Balasaheb Desai College Patan, Satara, 415206, Maharashtra, India.

出版信息

ChemSusChem. 2025 Jul 17;18(14):e202402559. doi: 10.1002/cssc.202402559. Epub 2025 May 27.

Abstract

Nickel cobalt sulfide (NiCoS) has considerable potential electrode material for supercapacitors owing to its distinct physical and chemical characteristics. However, the practical applications of pristine NiCoS have been limited by issues such as small specific surface area, agglomeration, and volume changes during cycling, leading to low specific capacitance/capacity and cyclic stability at high rates. Several efforts have been taken to address these challenges. Among those the design and development of NiCoS-graphene-based composites have been widely investigated. This review explores the effect of NiCoS architecture and its nanocomposite with graphene on the electrochemical properties. How the various preparative parameters such as synthesis methods, precursors, experimental conditions contributed to efficiently accelerating charge transport kinetics is outlined. Finally, the effect of introduction of graphene on the electrochemical performance of NiCoS is discussed using density functional theory (DFT). Also, machine learning (ML) models are used to analyze the specific capacitance variation with respect to different synthesis parameters, morphology, energy density, and power density. ML models identify limitations and scope of work for working on NiCoS/graphene composites. It is found that most influencing parameter is annealing time that can alter specific capacitance. The review outlines future research directions, challenges, and opportunities in NiCoS/graphene-based supercapacitor.

摘要

硫化镍钴(NiCoS)因其独特的物理和化学特性,是一种极具潜力的超级电容器电极材料。然而,原始NiCoS的实际应用受到诸如比表面积小、团聚以及循环过程中的体积变化等问题的限制,导致其在高倍率下比电容/容量较低且循环稳定性差。人们已经采取了多种措施来应对这些挑战。其中,基于NiCoS-石墨烯的复合材料的设计与开发受到了广泛研究。本综述探讨了NiCoS结构及其与石墨烯的纳米复合材料对电化学性能的影响。概述了各种制备参数,如合成方法、前驱体、实验条件如何有效地加速电荷传输动力学。最后,利用密度泛函理论(DFT)讨论了引入石墨烯对NiCoS电化学性能的影响。此外,机器学习(ML)模型用于分析比电容随不同合成参数、形态、能量密度和功率密度的变化。ML模型确定了研究NiCoS/石墨烯复合材料的工作局限性和范围。研究发现,最具影响的参数是退火时间,它可以改变比电容。本综述概述了基于NiCoS/石墨烯的超级电容器未来的研究方向、挑战和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1911/12270378/4ba0cadf2739/CSSC-18-e202402559-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验