Suppr超能文献

基于掺入硫化锰的二氧化锰纳米棒的缺陷诱导型超级电容器电极的电化学性能提升

Improved electrochemical performance of defect-induced supercapacitor electrodes based on MnS-incorporated MnO nanorods.

作者信息

Rahaman Mizanur, Islam Md Roxy, Islam Muhammad Rakibul

机构信息

Department of Physics, Bangladesh University of Engineering and Technology Dhaka Bangladesh

Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology Dhaka Bangladesh.

出版信息

Nanoscale Adv. 2024 Jun 12;6(16):4103-4110. doi: 10.1039/d4na00085d. eCollection 2024 Aug 6.

Abstract

In this paper, we report the effect of MnS nanoparticles on the electrochemical performance of 1D-MnO stable nanorods for supercapacitor electrodes. The MnS-incorporated 1D-MnO (MnO/MnS) nanorods were produced using a facile two-step hydrothermal method. Morphological investigation reveals that the incorporation of MnS nanoparticles distorts the lattice fringes and extends the interlayer spacing of the MnO nanorods. The structural study showed that MnS modified the structural parameters of the nanocomposite. XPS analysis revealed defects in the nanocomposite due to the generation of oxygen vacancies. The MnO/MnS nanocomposite improves capacitive performance and has the highest specific capacitance of 305 F g, at a current density of 1 A g with an energy density of 5.7 W h kg and a power density of 449 W kg. The MnO/MnS nanocomposite electrodes exhibit exceptional cyclic stability after 5000 charging and discharging cycles. With enhanced specific capacitance and excellent cyclic stability, the MnO/MnS nanocomposite paves a new way to produce supercapacitor electrodes.

摘要

在本文中,我们报道了硫化锰纳米颗粒对用于超级电容器电极的一维二氧化锰稳定纳米棒电化学性能的影响。采用简便的两步水热法制备了掺有硫化锰的一维二氧化锰(MnO/MnS)纳米棒。形态学研究表明,硫化锰纳米颗粒的掺入使晶格条纹发生畸变,并扩大了二氧化锰纳米棒的层间距。结构研究表明,硫化锰改变了纳米复合材料的结构参数。X射线光电子能谱分析表明,由于氧空位的产生,纳米复合材料存在缺陷。MnO/MnS纳米复合材料提高了电容性能,在电流密度为1 A g时具有305 F g的最高比电容,能量密度为5.7 W h kg,功率密度为449 W kg。MnO/MnS纳米复合电极在5000次充放电循环后表现出优异的循环稳定性。凭借增强的比电容和出色的循环稳定性,MnO/MnS纳米复合材料为制备超级电容器电极开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d183/11302122/43580f0600a3/d4na00085d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验