Suppr超能文献

用于脑磁共振图像无监督配准的边缘感知金字塔可变形网络

Edge-Aware Pyramidal Deformable Network for Unsupervised Registration of Brain MR Images.

作者信息

Cao Yiqin, Zhu Zhenyu, Rao Yi, Qin Chenchen, Lin Di, Dou Qi, Ni Dong, Wang Yi

机构信息

National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.

Tencent AI Lab, Shenzhen, China.

出版信息

Front Neurosci. 2021 Jan 21;14:620235. doi: 10.3389/fnins.2020.620235. eCollection 2020.

Abstract

Deformable image registration is of essential important for clinical diagnosis, treatment planning, and surgical navigation. However, most existing registration solutions require separate rigid alignment before deformable registration, and may not well handle the large deformation circumstances. We propose a novel edge-aware pyramidal deformable network (referred as EPReg) for unsupervised volumetric registration. Specifically, we propose to fully exploit the useful complementary information from the multi-level feature pyramids to predict multi-scale displacement fields. Such coarse-to-fine estimation facilitates the progressive refinement of the predicted registration field, which enables our network to handle large deformations between volumetric data. In addition, we integrate edge information with the original images as dual-inputs, which enhances the texture structures of image content, to impel the proposed network pay extra attention to the edge-aware information for structure alignment. The efficacy of our EPReg was extensively evaluated on three public brain MRI datasets including Mindboggle101, LPBA40, and IXI30. Experiments demonstrate our EPReg consistently outperformed several cutting-edge methods with respect to the metrics of Dice index (DSC), Hausdorff distance (HD), and average symmetric surface distance (ASSD). The proposed EPReg is a general solution for the problem of deformable volumetric registration.

摘要

可变形图像配准对于临床诊断、治疗规划和手术导航至关重要。然而,大多数现有的配准解决方案在进行可变形配准之前需要单独进行刚性对齐,并且可能无法很好地处理大变形情况。我们提出了一种用于无监督体素配准的新型边缘感知金字塔可变形网络(称为EPReg)。具体而言,我们建议充分利用来自多级特征金字塔的有用互补信息来预测多尺度位移场。这种从粗到细的估计有助于逐步细化预测的配准场,使我们的网络能够处理体素数据之间的大变形。此外,我们将边缘信息与原始图像作为双输入进行整合,增强图像内容的纹理结构,促使所提出的网络更加关注用于结构对齐的边缘感知信息。我们的EPReg的有效性在包括Mindboggle101、LPBA40和IXI30在内的三个公开脑MRI数据集上进行了广泛评估。实验表明,在骰子指数(DSC)、豪斯多夫距离(HD)和平均对称表面距离(ASSD)等指标方面,我们的EPReg始终优于几种前沿方法。所提出的EPReg是可变形体素配准问题的通用解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ae9/7859447/954f74abfb28/fnins-14-620235-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验