Lei Xuan, Schniter Philip, Chen Chong, Ahmad Rizwan
Electrical & Computer Engineering, The Ohio State University, Columbus, Ohio.
Biomedical Engineering, The Ohio State University, Columbus, Ohio.
Magn Reson Med. 2025 Sep;94(3):1257-1268. doi: 10.1002/mrm.30486. Epub 2025 May 12.
The purpose of this study is to perform image registration and averaging of multiple free-breathing single-shot cardiac images, where the individual images may have a low signal-to-noise ratio (SNR).
To address low SNR encountered in single-shot imaging, especially at low field strengths, we propose a fast deep learning (DL)-based image registration method, called Averaging Morph with Edge Detection (AiM-ED). AiM-ED jointly registers multiple noisy source images to a noisy target image and utilizes a noise-robust pre-trained edge detector to define the training loss. We validate AiM-ED using synthetic late gadolinium enhanced (LGE) images from the MR extended cardiac-torso (MRXCAT) phantom and free-breathing single-shot LGE images from healthy subjects (24 slices) and patients (5 slices) under various levels of added noise. Additionally, we demonstrate the clinical feasibility of AiM-ED by applying it to data from patients (6 slices) scanned on a 0.55T scanner.
Compared with a traditional energy-minimization-based image registration method and DL-based VoxelMorph, images registered using AiM-ED exhibit higher values of recovery SNR and three perceptual image quality metrics. An ablation study shows the benefit of both jointly processing multiple source images and using an edge map in AiM-ED.
For single-shot LGE imaging, AiM-ED outperforms existing image registration methods in terms of image quality. With fast inference, minimal training data requirements, and robust performance at various noise levels, AiM-ED has the potential to benefit single-shot CMR applications.
本研究的目的是对多个自由呼吸单次心跳心脏图像进行图像配准和平均,其中各个图像的信噪比(SNR)可能较低。
为了解决单次成像中遇到的低信噪比问题,尤其是在低场强情况下,我们提出了一种基于深度学习(DL)的快速图像配准方法,称为带边缘检测的平均形态学(AiM-ED)。AiM-ED将多个噪声源图像联合配准到一个噪声目标图像,并利用一个对噪声具有鲁棒性的预训练边缘检测器来定义训练损失。我们使用来自磁共振扩展心脏躯干(MRXCAT)体模的合成延迟钆增强(LGE)图像以及健康受试者(24层)和患者(5层)在不同添加噪声水平下的自由呼吸单次心跳LGE图像对AiM-ED进行验证。此外,我们通过将AiM-ED应用于在0.55T扫描仪上扫描的患者数据(6层)来证明其临床可行性。
与传统的基于能量最小化的图像配准方法和基于深度学习的VoxelMorph相比,使用AiM-ED配准的图像在恢复信噪比和三个感知图像质量指标方面表现出更高的值。一项消融研究表明了在AiM-ED中联合处理多个源图像和使用边缘图的好处。
对于单次心跳LGE成像,AiM-ED在图像质量方面优于现有的图像配准方法。凭借快速推理、对训练数据要求最低以及在各种噪声水平下的稳健性能,AiM-ED有潜力使单次心跳心脏磁共振成像(CMR)应用受益。