Suppr超能文献

基于线索感知深度回归网络的可变形图像配准

Deformable Image Registration Using a Cue-Aware Deep Regression Network.

出版信息

IEEE Trans Biomed Eng. 2018 Sep;65(9):1900-1911. doi: 10.1109/TBME.2018.2822826. Epub 2018 Apr 4.

Abstract

SIGNIFICANCE

Analysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse nature.

OBJECTIVE

We propose a novel deformable registration method, which is based on a cue-aware deep regression network, to deal with multiple databases with minimal parameter tuning.

METHODS

Our method learns and predicts the deformation field between a reference image and a subject image. Specifically, given a set of training images, our method learns the displacement vector associated with a pair of reference-subject patches. To achieve this, we first introduce a key-point truncated-balanced sampling strategy to facilitate accurate learning from the image database of limited size. Then, we design a cue-aware deep regression network, where we propose to employ the contextual cue, i.e., the scale-adaptive local similarity, to more apparently guide the learning process. The deep regression network is aware of the contextual cue for accurate prediction of local deformation.

RESULTS AND CONCLUSION

Our experiments show that the proposed method can tackle various registration tasks on different databases, giving consistent good performance without the need of manual parameter tuning, which could be applicable to various clinical applications.

摘要

意义

分析现代大规模、多中心或疾病数据需要能够处理不同性质数据的可变形配准算法。

目的

我们提出了一种新的基于线索感知深度回归网络的可变形配准方法,以最小化参数调整来处理多个数据库。

方法

我们的方法学习和预测参考图像和主体图像之间的变形场。具体来说,给定一组训练图像,我们的方法学习与一对参考-主体补丁相关联的位移向量。为此,我们首先引入了关键点截断平衡采样策略,以方便从有限大小的图像数据库中进行准确学习。然后,我们设计了一个线索感知深度回归网络,其中我们提出使用上下文线索,即尺度自适应局部相似性,更明显地指导学习过程。深度回归网络对上下文线索有感知,能够准确预测局部变形。

结果和结论

我们的实验表明,所提出的方法可以处理不同数据库上的各种配准任务,无需手动参数调整即可提供一致的良好性能,这可能适用于各种临床应用。

相似文献

1
Deformable Image Registration Using a Cue-Aware Deep Regression Network.基于线索感知深度回归网络的可变形图像配准
IEEE Trans Biomed Eng. 2018 Sep;65(9):1900-1911. doi: 10.1109/TBME.2018.2822826. Epub 2018 Apr 4.
2
Deformable Image Registration based on Similarity-Steered CNN Regression.基于相似性引导卷积神经网络回归的可变形图像配准
Med Image Comput Comput Assist Interv. 2017 Sep;10433:300-308. doi: 10.1007/978-3-319-66182-7_35. Epub 2017 Sep 4.
4
5
Anatomy-aware computed tomography-to-ultrasound spine registration.解剖感知 CT 到超声脊柱配准。
Med Phys. 2024 Mar;51(3):2044-2056. doi: 10.1002/mp.16731. Epub 2023 Sep 14.
6
Deep Q Learning Driven CT Pancreas Segmentation With Geometry-Aware U-Net.基于深度 Q 学习的具有几何感知 U-Net 的 CT 胰腺分割。
IEEE Trans Med Imaging. 2019 Aug;38(8):1971-1980. doi: 10.1109/TMI.2019.2911588. Epub 2019 Apr 16.

引用本文的文献

7
Artificial general intelligence for radiation oncology.用于放射肿瘤学的通用人工智能。
Meta Radiol. 2023 Nov;1(3). doi: 10.1016/j.metrad.2023.100045. Epub 2023 Nov 24.

本文引用的文献

4
Deformable Image Registration based on Similarity-Steered CNN Regression.基于相似性引导卷积神经网络回归的可变形图像配准
Med Image Comput Comput Assist Interv. 2017 Sep;10433:300-308. doi: 10.1007/978-3-319-66182-7_35. Epub 2017 Sep 4.
6
Learning-Based Multimodal Image Registration for Prostate Cancer Radiation Therapy.基于学习的前列腺癌放射治疗多模态图像配准
Med Image Comput Comput Assist Interv. 2016 Oct;9902:1-9. doi: 10.1007/978-3-319-46726-9_1. Epub 2016 Oct 2.
8
Quicksilver: Fast predictive image registration - A deep learning approach.快银:快速预测图像配准 - 深度学习方法。
Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验