Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America.
The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, United States of America.
Phys Med Biol. 2022 Jun 10;67(12). doi: 10.1088/1361-6560/ac72ef.
The accuracy of navigation in minimally invasive neurosurgery is often challenged by deep brain deformations (up to 10 mm due to egress of cerebrospinal fluid during neuroendoscopic approach). We propose a deep learning-based deformable registration method to address such deformations between preoperative MR and intraoperative CBCT.The registration method uses a joint image synthesis and registration network (denoted JSR) to simultaneously synthesize MR and CBCT images to the CT domain and perform CT domain registration using a multi-resolution pyramid. JSR was first trained using a simulated dataset (simulated CBCT and simulated deformations) and then refined on real clinical images via transfer learning. The performance of the multi-resolution JSR was compared to a single-resolution architecture as well as a series of alternative registration methods (symmetric normalization (SyN), VoxelMorph, and image synthesis-based registration methods).JSR achieved median Dice coefficient (DSC) of 0.69 in deep brain structures and median target registration error (TRE) of 1.94 mm in the simulation dataset, with improvement from single-resolution architecture (median DSC = 0.68 and median TRE = 2.14 mm). Additionally, JSR achieved superior registration compared to alternative methods-e.g. SyN (median DSC = 0.54, median TRE = 2.77 mm), VoxelMorph (median DSC = 0.52, median TRE = 2.66 mm) and provided registration runtime of less than 3 s. Similarly in the clinical dataset, JSR achieved median DSC = 0.72 and median TRE = 2.05 mm.The multi-resolution JSR network resolved deep brain deformations between MR and CBCT images with performance superior to other state-of-the-art methods. The accuracy and runtime support translation of the method to further clinical studies in high-precision neurosurgery.
在微创神经外科中,导航的准确性经常受到深部脑变形的挑战(由于神经内窥镜入路期间脑脊液流出,可达 10 毫米)。我们提出了一种基于深度学习的可变形配准方法,以解决术前磁共振成像(MR)和术中计算机断层扫描(CBCT)之间的这种变形。该配准方法使用联合图像合成和配准网络(表示为 JSR),将 MR 和 CBCT 图像同时合成到 CT 域,并使用多分辨率金字塔进行 CT 域配准。JSR 首先使用模拟数据集(模拟 CBCT 和模拟变形)进行训练,然后通过迁移学习在真实临床图像上进行细化。多分辨率 JSR 的性能与单分辨率架构以及一系列替代配准方法(对称归一化(SyN)、体素变形(VoxelMorph)和基于图像合成的配准方法)进行了比较。JSR 在模拟数据集的深部脑结构中实现了中位数 Dice 系数(DSC)为 0.69,中位数目标配准误差(TRE)为 1.94 毫米,与单分辨率架构相比有所提高(中位数 DSC=0.68,中位数 TRE=2.14 毫米)。此外,JSR 与替代方法相比,实现了更好的配准,例如 SyN(中位数 DSC=0.54,中位数 TRE=2.77 毫米)、VoxelMorph(中位数 DSC=0.52,中位数 TRE=2.66 毫米),并提供了不到 3 秒的配准运行时间。在临床数据集上,JSR 实现了中位数 DSC=0.72 和中位数 TRE=2.05 毫米。多分辨率 JSR 网络解决了 MR 和 CBCT 图像之间的深部脑变形问题,性能优于其他最先进的方法。该方法的准确性和运行时间支持将其转化为高精度神经外科的进一步临床研究。