Suppr超能文献

肺腺癌免疫预后11基因特征的鉴定

Identification of an immune prognostic 11-gene signature for lung adenocarcinoma.

作者信息

Yang Tao, Hao Lizheng, Cui Renyun, Liu Huanyu, Chen Jian, An Jiongjun, Qi Shuo, Li Zhong

机构信息

Department of Hematology and Oncology, Dongzhimen Hospital, the First Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China.

Department of Thyroid, Dongzhimen Hospital, the First Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China.

出版信息

PeerJ. 2021 Jan 20;9:e10749. doi: 10.7717/peerj.10749. eCollection 2021.

Abstract

BACKGROUND

The immunological tumour microenvironment (TME) has occupied a very important position in the beginning and progression of non-small cell lung cancer (NSCLC). Prognosis of lung adenocarcinoma (LUAD) remains poor for the local progression and widely metastases at the time of clinical diagnosis. Our objective is to identify a potential signature model to improve prognosis of LUAD.

METHODS

With the aim to identify a novel immune prognostic signature associated with overall survival (OS), we analysed LUADs extracted from The Cancer Genome Atlas (TCGA). Immune scores and stromal scores of TCGA-LUAD were downloaded from Estimation of STromal and Immune cells in MAlignant Tumour tissues Expression using data (ESTIMATE). LASSO COX regression was applied to build the prediction model. Then, the prognostic gene signature was validated in the GSE68465 dataset.

RESULTS

The data from TCGA datasets showed patients in stage I and stage II had higher stromal scores than patients in stage IV ( < 0.05), and for immune score patients in stage I were higher than patients in stage III and stage IV ( < 0.05). The improved overall survivals were observed in high stromal score and immune score groups. Patients in the high-risk group exhibited the inferior OS ( = 2.501 - 05). By validating the 397 LUAD patients from GSE68465, we observed a better OS in the low-risk group compared to the high-risk group, which is consistent with the results from the TCGA cohort. Nomogram results showed that practical and predicted survival coincided very well, especially for 3-year survival.

CONCLUSION

We obtained an 11 immune score related gene signature model as an independent element to effectively classify LUADs into different risk groups, which might provide a support for precision treatments. Moreover, immune score may play a potential valuable sole for estimating OS in LUADs.

摘要

背景

免疫肿瘤微环境(TME)在非小细胞肺癌(NSCLC)的起始和进展过程中占据非常重要的地位。肺腺癌(LUAD)在临床诊断时因局部进展和广泛转移,其预后仍然较差。我们的目标是识别一种潜在的特征模型以改善LUAD的预后。

方法

为了识别一种与总生存期(OS)相关的新型免疫预后特征,我们分析了从癌症基因组图谱(TCGA)中提取的LUAD数据。TCGA-LUAD的免疫评分和基质评分是从利用表达数据估计恶性肿瘤组织中的基质和免疫细胞(ESTIMATE)中下载的。应用LASSO COX回归构建预测模型。然后,在GSE68465数据集中验证预后基因特征。

结果

来自TCGA数据集的数据显示,I期和II期患者的基质评分高于IV期患者(<0.05),对于免疫评分,I期患者高于III期和IV期患者(<0.05)。在高基质评分和免疫评分组中观察到总生存期有所改善。高危组患者的OS较差(=2.501 - 05)。通过对GSE68465中的397例LUAD患者进行验证,我们观察到低危组的OS优于高危组,这与TCGA队列的结果一致。列线图结果显示实际生存与预测生存非常吻合,尤其是对于3年生存率。

结论

我们获得了一个与11个免疫评分相关的基因特征模型,作为一个独立因素可有效地将LUAD分为不同风险组,这可能为精准治疗提供支持。此外,免疫评分可能在估计LUAD的OS方面具有潜在的重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932b/7825366/e7604bd1bbd9/peerj-09-10749-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验