Lin Zhengjie, Shen Danni, Zhou Weixiao, Zheng Yufeng, Kong Tiantian, Liu Xuanyong, Wu Shuilin, Chu Paul K, Zhao Ying, Wu Jun, Cheung Kenneth M C, Yeung Kelvin W K
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China.
Bioact Mater. 2021 Jan 23;6(8):2315-2330. doi: 10.1016/j.bioactmat.2021.01.018. eCollection 2021 Aug.
The design of orthopedic biomaterials has gradually shifted from "immune-friendly" to "immunomodulatory," in which the biomaterials are able to modulate the inflammatory response via macrophage polarization in a local immune microenvironment that favors osteogenesis and implant-to-bone osseointegration. Despite the well-known effects of bioactive metallic ions on osteogenesis, how extracellular metallic ions manipulate immune cells in bone tissue microenvironments toward osteogenesis and subsequent bone formation has rarely been studied. Herein, we investigate the osteoimmunomodulatory effect of an extracellular bioactive cation (Mg) in the bone tissue microenvironment using custom-made poly lactic-co-glycolic acid (PLGA)/MgO-alendronate microspheres that endow controllable release of magnesium ions. The results suggest that the Mg-controlled tissue microenvironment can effectively induce macrophage polarization from the M0 to M2 phenotype via the enhancement of anti-inflammatory (IL-10) and pro-osteogenic (BMP-2 and TGF-β1) cytokines production. It also generates a favorable osteoimmune microenvironment that facilitates the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. The results further verify that a large amount of bony tissue, with comparable bone mineral density and mechanical properties, has been generated at an early post-surgical stage in rat intramedullary bone defect models. This study demonstrates that the concept of immunomodulated osteogenesis can be realized in a controlled magnesium tissue microenvironment.
骨科生物材料的设计已逐渐从“免疫友好型”转向“免疫调节型”,在这种情况下,生物材料能够在有利于骨生成和种植体与骨的骨整合的局部免疫微环境中,通过巨噬细胞极化来调节炎症反应。尽管生物活性金属离子对骨生成的作用已广为人知,但细胞外金属离子如何在骨组织微环境中操纵免疫细胞以促进骨生成及随后的骨形成却鲜有研究。在此,我们使用定制的聚乳酸-乙醇酸共聚物(PLGA)/氧化镁-阿仑膦酸盐微球来研究骨组织微环境中细胞外生物活性阳离子(镁)的骨免疫调节作用,该微球可实现镁离子的可控释放。结果表明,镁离子控制的组织微环境可通过增强抗炎(白细胞介素-10)和促骨生成(骨形态发生蛋白-2和转化生长因子-β1)细胞因子的产生,有效地诱导巨噬细胞从M0表型极化为M2表型。它还能产生一个有利的骨免疫微环境,促进骨髓间充质干细胞的增殖和成骨分化。结果进一步证实,在大鼠髓内骨缺损模型的术后早期阶段,已生成了大量骨密度和力学性能相当的骨组织。本研究表明,免疫调节骨生成的概念可以在可控的镁离子组织微环境中实现。
Biomed Res Int. 2019-11-14
Acta Biomater. 2018-12-13
Biomaterials. 2014-7-11
Mater Sci Eng C Mater Biol Appl. 2019-11-29
Adv Sci (Weinh). 2025-9
Tissue Eng Regen Med. 2025-7-14
Biomater Transl. 2025-6-25
Research (Wash D C). 2025-5-22
Regen Biomater. 2025-4-26
J Nanobiotechnology. 2025-5-13
Inflammopharmacology. 2019-6-6
J Hand Surg Am. 2019-6
Adv Healthc Mater. 2018-10-17
Biomaterials. 2018-7-31
Macromol Biosci. 2018-6-19