Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, PR China.
Centre for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Biomaterials. 2019 Oct;219:119372. doi: 10.1016/j.biomaterials.2019.119372. Epub 2019 Jul 25.
Rapid corrosion of biodegradable magnesium alloys under in vivo condition is a major concern for clinical applications. Inspired by the stability and biocompatibility of titanium oxide (TiO) passive layer, a functionalized TiO/MgTiO nano-layer has been constructed on the surface of WE43 magnesium implant by using plasma ion immersion implantation (PIII) technique. The customized nano-layer not only enhances corrosion resistance of Mg substrates significantly, but also elevates the osteoblastic differentiation capability in vitro due to the controlled release of magnesium ions. In the animal study, the increase of new bone formation adjacent to the PIII-treated magnesium substrate is 175% higher at post-operation 12 weeks, whereas the growth of new bone on titanium control and untreated magnesium substrate are only 97% and 29%, respectively. In addition, its Young's modulus can be restored to about 82% as compared with the surrounding matured bone. Furthermore, this specific TiO/MgTiO layer even exhibits photoactive bacteria disinfection capability when irradiated by ultraviolet light which is attributed to the intracellular reactive oxygen species (ROS) production. With all these constructive observations, it is believed that the TiO/MgTiO nano-layer on magnesium implants can significantly promote new bone formation and suppress bacterial infection, while the degradation behavior can be controlled simultaneously.
可生物降解镁合金在体内环境下的快速腐蚀是临床应用的主要关注点。受钛氧化物 (TiO) 钝化层的稳定性和生物相容性的启发,通过等离子体离子浸没注入 (PIII) 技术在 WE43 镁植入物表面构建了功能化的 TiO/MgTiO 纳米层。定制的纳米层不仅显著提高了 Mg 基体的耐腐蚀性,而且由于镁离子的受控释放,还提高了体外成骨细胞的分化能力。在动物研究中,与手术后 12 周相比,经 PIII 处理的镁基底附近的新骨形成增加了 175%,而钛对照和未经处理的镁基底上的新骨形成仅增加了 97%和 29%。此外,其杨氏模量可恢复至周围成熟骨的约 82%。此外,当受到紫外光照射时,这种特定的 TiO/MgTiO 层甚至表现出光活性细菌消毒能力,这归因于细胞内活性氧 (ROS) 的产生。综上所述,人们相信镁植入物上的 TiO/MgTiO 纳米层可以显著促进新骨形成和抑制细菌感染,同时可以控制降解行为。