Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 138-736, South Korea.
VUNO Inc., Seoul, South Korea.
Eur Radiol. 2021 Aug;31(8):6239-6247. doi: 10.1007/s00330-020-07620-z. Epub 2021 Feb 8.
To evaluate a deep learning-based model using model-generated segmentation masks to differentiate invasive pulmonary adenocarcinoma (IPA) from preinvasive lesions or minimally invasive adenocarcinoma (MIA) on CT, making comparisons with radiologist-derived measurements of solid portion size.
Four hundred eleven subsolid nodules (SSNs) (120 preinvasive lesions or MIAs and 291 IPAs) in 333 patients who underwent surgery between June 2010 and August 2016 were retrospectively included to develop the model (370 SSNs in 293 patients for training and 41 SSNs in 40 patients for tuning). Ninety SSNs of 2 cm or smaller (45 preinvasive lesions or MIAs and 45 IPAs) resected in 2018 formed a validation set. Six radiologists measured the solid portion of each nodule. Performances of the model and radiologists were assessed using receiver operating characteristics curve analysis.
The deep learning model differentiated IPA from preinvasive lesions or MIA with areas under the curve (AUCs) of 0.914, 0.956, and 0.833 for the training, tuning, and validation sets, respectively. The mean AUC of the radiologists was 0.835 in the validation set, without significant differences between radiologists and the model (p = 0.97). The sensitivity, specificity, and accuracy of the model were 71% (32/45), 87% (39/45), and 79% (71/90), respectively, whereas the corresponding values of the radiologists were 75.2% (203/270), 76.7% (207/270), and 75.9% (410/540) with a 5-mm threshold for the solid portion size.
The performance of the model for differentiating IPA from preinvasive lesions or MIA was comparable to that of the radiologists' measurements of solid portion size.
• A deep learning-based model differentiated IPA from preinvasive lesions or MIA with AUCs of 0.914 and 0.956 for the training and tuning sets, respectively. • In the validation set including subsolid nodules of 2 cm or smaller, the model showed an AUC of 0.833, being on par with the performance of the solid portion size measurements made by the radiologists (AUC, 0.835; p = 0.97). • SSNs with a solid portion measuring > 10 mm on CT showed a high probability of being IPA (positive predictive value, 93.5-100.0%).
评估一种基于深度学习的模型,该模型使用模型生成的分割掩模来区分 CT 上的浸润性肺腺癌 (IPA) 与非侵袭性病变或微浸润性腺癌 (MIA),并与放射科医生对实性部分大小的测量结果进行比较。
回顾性纳入 2010 年 6 月至 2016 年 8 月期间手术的 333 例患者的 411 个亚实性结节 (SSN)(120 个非侵袭性病变或 MIA 和 291 个 IPA),以建立模型(293 例患者的 370 个 SSN 用于训练,40 例患者的 41 个 SSN 用于调整)。2018 年切除的 2cm 或更小的 90 个 SSN(45 个非侵袭性病变或 MIA 和 45 个 IPA)构成验证集。6 名放射科医生测量了每个结节的实性部分。使用接收者操作特征曲线分析评估模型和放射科医生的表现。
深度学习模型在训练、调整和验证集的曲线下面积 (AUC) 分别为 0.914、0.956 和 0.833,用于区分 IPA 与非侵袭性病变或 MIA。验证集放射科医生的平均 AUC 为 0.835,放射科医生与模型之间无显著差异 (p=0.97)。模型的敏感性、特异性和准确性分别为 71%(32/45)、87%(39/45)和 79%(71/90),而放射科医生的相应值分别为 75.2%(203/270)、76.7%(207/270)和 75.9%(410/540),实性部分大小的阈值为 5mm。
该模型在区分 IPA 与非侵袭性病变或 MIA 方面的性能与放射科医生对实性部分大小的测量相当。
基于深度学习的模型在训练和调整集的 AUC 分别为 0.914 和 0.956,可区分 IPA 与非侵袭性病变或 MIA。
在包括 2cm 或更小 SSN 的验证集中,模型的 AUC 为 0.833,与放射科医生测量的实性部分大小的表现相当 (AUC,0.835;p=0.97)。
CT 上实性部分测量值大于 10mm 的 SSN 极有可能为 IPA(阳性预测值,93.5-100.0%)。